Treffer: dnadna: A DEEP LEARNING FRAMEWORK FOR POPULATION GENETIC INFERENCE

Title:
dnadna: A DEEP LEARNING FRAMEWORK FOR POPULATION GENETIC INFERENCE
dnadna: A DEEP LEARNING FRAMEWORK FOR POPULATION GENETIC INFERENCE: dnadna: Deep Neural Architectures for DNA
Contributors:
TAckling the Underspecified (TAU), Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Interdisciplinaire des Sciences du Numérique (LISN), CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Laboratoire Interdisciplinaire des Sciences du Numérique (LISN), CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Accompagnement et Soutien aux Activités de Recherche & Développement (ASARD), Éco-Anthropologie (EAE), Muséum national d'Histoire naturelle (MNHN)-Centre National de la Recherche Scientifique (CNRS), BioInformatique (BioInfo), CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Science des Données (SDD), Evolution et ingénierie de systèmes dynamiques (SEED (UMR-S 1284/U 1284)), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris Cité (UPCité), ANR-20-CE45-0010,RoDAPoG,Apprentissage profond robuste pour la génomique des populations(2020)
Source:
{date}
Publisher Information:
HAL CCSD, 2022.
Publication Year:
2022
Collection:
collection:MNHN
collection:CNRS
collection:INRIA
collection:INRIA-SACLAY
collection:INRIA_TEST
collection:TESTALAIN1
collection:CENTRALESUPELEC
collection:INRIA2
collection:UNIV-PARIS-SACLAY
collection:UNIVERSITE-PARIS-SACLAY
collection:ANR
collection:LISN
collection:GS-COMPUTER-SCIENCE
collection:LISN-BIOINFO
collection:LISN-AO
collection:LISN-ASARD
collection:ALLIANCE-SU
Original Identifier:
HAL: hal-03352910
Document Type:
E-Ressource preprint<br />Preprints<br />Working Papers
Language:
English
Rights:
info:eu-repo/semantics/OpenAccess
Accession Number:
edshal.hal.03352910v3
Database:
HAL

Weitere Informationen

We present dnadna, a flexible python-based software for deep learning inference in population genetics. It is task-agnostic and aims at facilitating the development, reproducibility, dissemination, and reusability of neural networks designed for population genetic data. dnadna defines multiple user-friendly workflows. First, users can implement new architectures and tasks, while benefiting from dnadna utility functions, training procedure and test environment, which saves time and decreases the likelihood of bugs. Second, the implemented networks can be re-optimized based on user-specified training sets and/or tasks. Newly implemented architectures and pretrained networks are easily shareable with the community for further benchmarking or other applications. Finally, users can apply pretrained networks in order to predict evolutionary history from alternative real or simulated genetic datasets, without requiring extensive knowledge in deep learning or coding in general.dnadna comes with a peer-reviewed, exchangeable neural network, allowing demographic inference from SNP data, that can be used directly or retrained to solve other tasks. Toy networks are also available to ease the exploration of the software, and we expect that the range of available architectures will keep expanding thanks to community contributions.Availability: dnadna repository is available at gitlab.com/mlgenetics/dnadna and its associated documentation at mlgenetics.gitlab.io/dnadna/.