Serviceeinschränkungen vom 12.-22.02.2026 - weitere Infos auf der UB-Homepage

Treffer: Exploiting augmented intelligence in the modeling of safety-critical autonomous systems

Title:
Exploiting augmented intelligence in the modeling of safety-critical autonomous systems
Contributors:
Nanjing University of Aeronautics and Astronautics [Nanjing] (NUAA), Assistance à la Certification d’Applications DIstribuées et Embarquées (IRIT-ACADIE), Institut de recherche en informatique de Toulouse (IRIT), Université Toulouse Capitole (UT Capitole), Communauté d'universités et établissements de Toulouse (Comue de Toulouse)-Communauté d'universités et établissements de Toulouse (Comue de Toulouse)-Université Toulouse - Jean Jaurès (UT2J), Communauté d'universités et établissements de Toulouse (Comue de Toulouse)-Communauté d'universités et établissements de Toulouse (Comue de Toulouse)-Université Toulouse III - Paul Sabatier (UT3), Communauté d'universités et établissements de Toulouse (Comue de Toulouse)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Communauté d'universités et établissements de Toulouse (Comue de Toulouse)-Toulouse Mind & Brain Institut (TMBI), Université Toulouse - Jean Jaurès (UT2J), Communauté d'universités et établissements de Toulouse (Comue de Toulouse)-Université Toulouse III - Paul Sabatier (UT3), Communauté d'universités et établissements de Toulouse (Comue de Toulouse)-Université Toulouse Capitole (UT Capitole), Communauté d'universités et établissements de Toulouse (Comue de Toulouse), Umeå University = Umeå Universitet
Source:
Formal Aspects of Computing. 33(3):343-384
Publisher Information:
CCSD; Springer Verlag, 2021.
Publication Year:
2021
Collection:
collection:UNIV-TLSE2
collection:UNIV-TLSE3
collection:CNRS
collection:UT1-CAPITOLE
collection:IRIT
collection:IRIT-ACADIE
collection:IRIT-FSL
collection:TOULOUSE-INP
collection:UNIV-UT3
collection:UT3-INP
collection:UT3-TOULOUSEINP
Original Identifier:
HAL: hal-03411215
Document Type:
Zeitschrift article<br />Journal articles
Language:
English
ISSN:
0934-5043
1433-299X
Relation:
info:eu-repo/semantics/altIdentifier/doi/10.1007/s00165-021-00543-6
DOI:
10.1007/s00165-021-00543-6
Rights:
info:eu-repo/semantics/OpenAccess
Accession Number:
edshal.hal.03411215v1
Database:
HAL

Weitere Informationen

Machine learning (ML) is used increasingly in safety-critical systems to provide more complex autonomy to make the system to do decisions by itself in uncertain environments. Using ML to learn system features is fundamentally different from manually implementing them in conventional components written in source code. In this paper, we make a first step towards exploring the architecture modeling of safety-critical autonomous systems which are composed of conventional components and ML components, based on natural language requirements. Firstly, augmented intelligence for restricted natural language requirement modeling is proposed. In that, several AI technologies such as natural language processing and clustering are used to recommend candidate terms to the glossary, as well as machine learning is used to predict the category of requirements. The glossary including data dictionary and domain glossary and the category of requirements will be used in the restricted natural language requirement specification method RNLReq, which is equipped with a set of restriction rules and templates to structure and restrict the way how users document requirements. Secondly, automatic generation of SysML architecture models from the RNLReq requirement specifications is presented. Thirdly, the prototype tool is implemented based on Papyrus. Finally, it presents the evaluation of the proposed approach using an industrial autonomous guidance, navigation and control case study.