Treffer: Implementing Linear Bandits in Off-the-Shelf SQLite

Title:
Implementing Linear Bandits in Off-the-Shelf SQLite
Contributors:
Université Grenoble Alpes (UGA), Laboratoire d'Informatique de Grenoble (LIG), Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP), ANR-19-P3IA-0003,MIAI,MIAI @ Grenoble Alpes(2019), European Project: 863410,H2020-INFRAEOSC-2018-2020,H2020-INFRAEOSC-2019-1,INODE(2019), European Project: 952215,H2020-ICT-2018-20,H2020-ICT-2019-3,TAILOR(2020)
Source:
EDBT 2022: International Conference on Extending Database Technology. :388-392
Publisher Information:
CCSD, 2022.
Publication Year:
2022
Collection:
collection:UGA
collection:CNRS
collection:INPG
collection:LIG
collection:LIG-TDCGE-SLIDE
collection:MIAI
collection:PNRIA
collection:UGA-EPE
collection:ANR
collection:LIG_SIDCH
collection:ANR-IA-19
collection:ANR-IA
collection:TEST-UGA
Original Identifier:
HAL: hal-03547303
Document Type:
Konferenz conferenceObject<br />Conference papers
Language:
English
Relation:
info:eu-repo/grantAgreement//863410/EU/INODE - Intelligent Open Data Exploration/INODE; info:eu-repo/grantAgreement//952215/EU/Foundations of Trustworthy AI - Integrating Reasoning, Learning and Optimization/TAILOR
Accession Number:
edshal.hal.03547303v1
Database:
HAL

Weitere Informationen

The linear multi-armed bandit is a reinforcement learning model that is largely used for sequential decision making in applications such as online advertising and recommender systems. We show that LinUCB, a well-known cumulative reward maximization algorithm for linear bandits, can be implemented in off-the-shelf SQLite. Additionally, our empirical study shows that, when dealing with small bandit data, our SQLite implementation is faster than an implementation in off-the-shelf Python. We believe that our findings open the door for many promising research directions on the topic of in-DBMS federated learning because (i) in the federated learning paradigm, many data owners contribute to the same learning task while locally storing their small data, and (ii) SQLite is a DBMS embedded in billions of devices, hence being able to implement federated learning on top of SQLite is of great practical interest.