Treffer: Artificial Metabolic Networks: enabling neural computation with metabolic networks

Title:
Artificial Metabolic Networks: enabling neural computation with metabolic networks
Contributors:
MICrobiologie de l'ALImentation au Service de la Santé (MICALIS), AgroParisTech-Université Paris-Saclay-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Université Paris-Saclay, École normale supérieure de Lyon (ENS de Lyon), Université de Lyon, Mathématiques et Informatique Appliquées du Génome à l'Environnement [Jouy-En-Josas] (MaIAGE), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Laboratoire de Spectroscopies et Structures Biomoléculaires (LSSBM) (EA3305), Centre National de la Recherche Scientifique (CNRS), University of Manchester [Manchester]
Publisher Information:
CCSD, 2022.
Publication Year:
2022
Collection:
collection:ENS-LYON
collection:AGROPARISTECH
collection:CNRS
collection:UNIV-PARIS-SACLAY
collection:AGREENIUM
collection:UDL
collection:UNIV-LYON
collection:INRAE
collection:INRAE-UPSACLAY
collection:UNIVERSITE-PARIS-SACLAY
collection:GS-MATHEMATIQUES
collection:GS-COMPUTER-SCIENCE
collection:GS-BIOSPHERA
collection:GS-LIFE-SCIENCES-HEALTH
collection:GS-HEALTH-DRUG-SCIENCES
collection:MAIAGE
collection:MICA-UNITES
collection:MICALIS
collection:MATHNUM
collection:RESEAU-EAU
collection:DIGIT-BIO
collection:TEST-MATHNUM
collection:BRS-MICALIS
collection:APT_TEST
Original Identifier:
HAL: hal-03613655
Document Type:
E-Ressource preprint<br />Preprints<br />Working Papers
Language:
English
Relation:
info:eu-repo/semantics/altIdentifier/doi/10.1101/2022.01.09.475487
DOI:
10.1101/2022.01.09.475487
Rights:
info:eu-repo/semantics/OpenAccess
URL: http://creativecommons.org/licenses/by-nc-nd/
Accession Number:
edshal.hal.03613655v2
Database:
HAL

Weitere Informationen

Metabolic networks have largely been exploited as mechanistic tools to predict the behavior of microorganisms with a defined genotype in different environments. However, flux predictions by constraint-based modeling approaches are limited in quality unless labor intensive experiments including the measurement of media intake fluxes, are performed. Using machine learning instead of an optimization of biomass flux-on which most existing constraint-based methods are basedprovides ways to improve flux and growth rate predictions. In this paper, we show how Recurrent Neural Networks can surrogate constraint-based modeling and make metabolic networks suitable for backpropagation and consequently be used as an architecture for machine learning. We refer to our hybrid-mechanistic and neural network-models as Artificial Metabolic Networks (AMN). We showcase AMN and illustrate its performance with an experimental dataset of Escherichia coli growth rates in 73 different media compositions. We reach a regression coefficient of R 2 =0.78 on crossvalidation sets. We expect AMNs to provide easier discovery of metabolic insights and prompt new biotechnological applications.