Treffer: Perdido: Python library for geoparsing and geocoding French texts

Title:
Perdido: Python library for geoparsing and geocoding French texts
Contributors:
Data Mining and Machine Learning (DM2L), Laboratoire d'InfoRmatique en Image et Systèmes d'information (LIRIS), Université Lumière - Lyon 2 (UL2)-École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Lumière - Lyon 2 (UL2)-École Centrale de Lyon (ECL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Mathématiques et de leurs Applications [Pau] (LMAP), Université de Pau et des Pays de l'Adour (UPPA)-Centre National de la Recherche Scientifique (CNRS), ANR-10-LABX-0081,ASLAN,Advanced Studies on Language Complexity(2010)
Publisher Information:
CCSD, 2023.
Publication Year:
2023
Collection:
collection:CNRS
collection:UNIV-PAU
collection:UNIV-LYON1
collection:UNIV-LYON2
collection:INSA-LYON
collection:EC-LYON
collection:LMA-PAU
collection:INSMI
collection:LIRIS
collection:LYON2
collection:INSA-GROUPE
collection:UDL
collection:UNIV-LYON
collection:ANR
collection:UPPA-OA
collection:UPPA-STEE
collection:ASLAN-GEODE
collection:UPPA-COLLEGES
collection:HAL-LYON-2-NOUVELLE-VERSION
Subject Geographic:
Original Identifier:
HAL: hal-04049794
Document Type:
Konferenz conferenceObject<br />Conference papers
Language:
English
Rights:
info:eu-repo/semantics/OpenAccess
URL: http://creativecommons.org/licenses/by/
Accession Number:
edshal.hal.04049794v1
Database:
HAL

Weitere Informationen

This paper introduces the Perdido Python library for geoparsing and geocoding French texts. The architecture of the Perdido Geoparser, which includes three layers: back-office, API, and Python library, is outlined. We also provide details on the methods used in the development of the processing chain and the various tasks covered, such as named entity recognition and classification (NERC), and toponym resolution. Lastly, we showcase the different features of the Python library and explain how to use it. The library is built as an overlay using API services, enabling users to manipulate, visualize, and export the results of geoparsing and geocoding. A Jupyter notebook is also provided to demonstrate all the functionalities implemented in the library.