Treffer: HGExplainer: Explainable Heterogeneous Graph Neural Network

Title:
HGExplainer: Explainable Heterogeneous Graph Neural Network
Contributors:
Institut Polytechnique de Paris (IP Paris), Télécom SudParis (TSP), Institut Mines-Télécom [Paris] (IMT)-Institut Polytechnique de Paris (IP Paris), Département Informatique (TSP - INF), Institut Mines-Télécom [Paris] (IMT)-Télécom SudParis (TSP), Institut Mines-Télécom [Paris] (IMT)-Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris), Architecture, Cloud continuum, formal Models, artificial intElligence and Services in distributed computing (ACMES-SAMOVAR), Services répartis, Architectures, MOdélisation, Validation, Administration des Réseaux (SAMOVAR), Institut Mines-Télécom [Paris] (IMT)-Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-Institut Mines-Télécom [Paris] (IMT)-Télécom SudParis (TSP), Centre de Recherche en Informatique (CRI), Mines Paris - PSL (École nationale supérieure des mines de Paris), Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL), Efrei Research Lab, Efrei (Villejuif / Bordeaux) (Efrei)-Université Paris-Panthéon-Assas, Université Paris-Panthéon-Assas
Source:
WI-IAT. :221-229
Publisher Information:
CCSD, 2023.
Publication Year:
2023
Collection:
collection:ENSMP
collection:TELECOM-SUDPARIS
collection:ENSMP_CRI
collection:PSL
collection:ENSMP_DEP_MS
collection:ENSMP_DR
collection:IP_PARIS
collection:INSTITUTS-TELECOM
collection:TSP-DIEGO
collection:ENSMP-PSL
collection:PANTHEON-ASSAS-UNIVERSITE
collection:UNIV-ASSAS
collection:INSTITUT-MINES-TELECOM
collection:IP-PARIS-MATHEMATIQUES
collection:IP-PARIS-INFORMATION-COMMUNICATION-ELECTRONIQUE
collection:IP-PARIS-INFORMATIQUE-DONNEES-ET-IA
collection:SAMOVAR
Subject Geographic:
Original Identifier:
HAL: hal-04220962
Document Type:
Konferenz conferenceObject<br />Conference papers
Language:
English
Relation:
info:eu-repo/semantics/altIdentifier/doi/10.1109/WI-IAT59888.2023.00035
DOI:
10.1109/WI-IAT59888.2023.00035
Rights:
info:eu-repo/semantics/OpenAccess
Accession Number:
edshal.hal.04220962v2
Database:
HAL

Weitere Informationen

Graph Neural Networks (GNNs) are an effective framework for graph representation learning in real-world appli- cations. However, despite their increasing success, they remain notoriously challenging to interpret, and their predictions are hard to explain. Nowadays, several recent works have proposed methods to explain the decisions made by GNNs. However, they only aggregate information from the same type of neighbors or indiscriminately treat homogeneous and heterogeneous neighbors similarly. Based on these observations, we propose HGExplainer, an explainer for heterogeneous GNNs to comprehensively capture structural, semantic, and attribute information from homogeneous and heterogeneous neighbors. We first train the GNN model to represent the predictions on a heterogeneous network. To make the explainable predictions, we design the model to capture heterogeneity information in calculating the joint mutual information maximization, extracting the meta-path-based graph sampling to generate more prosperous and more accurate explanations. Finally, we evaluate our explainable method on synthetic and real-life datasets and perform concrete case studies. Extensive results show that HGExplainer can provide inherent explanations while achieving high accuracy.