Treffer: Identification of material parameters in low-data limit: application to gradient-enhanced continua

Title:
Identification of material parameters in low-data limit: application to gradient-enhanced continua
Contributors:
Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Arts et Métiers Sciences et Technologies, Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM), Conservatoire National des Arts et Métiers [Cnam] (Cnam)-Centre National de la Recherche Scientifique (CNRS)-Arts et Métiers Sciences et Technologies, ESI Group (ESI Group), CNRS@CREATE Ltd., ANR-20-CE08-0010,SGP-GAPS,Investigation expérimentale et numérique des gaps élastiques dans les théories de plasticité à gradient(2020)
Source:
International Journal of Material Forming. 17(1)
Publisher Information:
CCSD; Springer Verlag, 2024.
Publication Year:
2024
Collection:
collection:CNRS
collection:CNAM
collection:ENSAM
collection:UNIV-LORRAINE
collection:LEM3-UL
collection:PIMM
collection:ANR
collection:HESAM-CNAM
collection:HESAM
collection:HESAM-ENSAM
collection:M4-UL
Original Identifier:
HAL: hal-04371844
Document Type:
Zeitschrift article<br />Journal articles
Language:
English
ISSN:
1960-6206
1960-6214
Relation:
info:eu-repo/semantics/altIdentifier/doi/10.1007/s12289-023-01807-7
DOI:
10.1007/s12289-023-01807-7
Rights:
info:eu-repo/semantics/OpenAccess
Accession Number:
edshal.hal.04371844v1
Database:
HAL

Weitere Informationen

Due to the growing trend towards miniaturization, small-scale manufacturing processes have become widely used in various engineering fields to manufacture miniaturized products. These processes generally exhibit complex size effects, making the behavior of materials highly dependent on their geometric dimensions. As a result, accurate understanding and modeling of such effects are crucial for optimizing manufacturing outcomes and achieving high-performance final products. To this end, advanced gradient-enhanced plasticity theories have emerged as powerful tools for capturing these complex phenomena, offering a level of accuracy significantly greater than that provided by classical plasticity approaches. However, these advanced theories often require the identification of a large number of material parameters, which poses a significant challenge due to limited experimental data at small scales and high computation costs. The present paper aims at evaluating and comparing the effectiveness of various optimization techniques, including evolutionary algorithm, response surface methodology and Bayesian optimization, in identifying the material parameter of a recent flexible gradient-enhanced plasticity model developed by the authors. The paper findings represent an attempt to bridge the gap between advanced material behavior theories and their practical industrial applications, by offering insights into efficient and reliable material parameter identification procedures.