Result: MSKdeX: Musculoskeletal (MSK) Decomposition from an X-Ray Image for Fine-Grained Estimation of Lean Muscle Mass and Muscle Volume

Title:
MSKdeX: Musculoskeletal (MSK) Decomposition from an X-Ray Image for Fine-Grained Estimation of Lean Muscle Mass and Muscle Volume
Contributors:
Nara Institute of Science and Technology, Osaka University [Osaka], Ehime University [Matsuyama, Japon], OPtimisation Imagerie et Santé (OPIS), Centre de vision numérique (CVN), Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Centre Inria de l'Université Paris-Saclay, Centre Inria de Saclay, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre Inria de Saclay, Institut National de Recherche en Informatique et en Automatique (Inria), CentraleSupélec
Source:
MICCAI 2023 - 26th International Conference on Medical Image Computing and Computer-Assisted Intervention. :497-507
Publisher Information:
CCSD; Springer Nature Switzerland, 2023.
Publication Year:
2023
Collection:
collection:INRIA
collection:INRIA-SACLAY
collection:INRIA_TEST
collection:CVN
collection:TESTALAIN1
collection:CENTRALESUPELEC
collection:INRIA2
collection:UNIV-PARIS-SACLAY
collection:UNIVERSITE-PARIS-SACLAY
collection:GS-COMPUTER-SCIENCE
collection:HUB-IA
collection:INRIA-JAPON
Subject Geographic:
Original Identifier:
ARXIV: 2305.19920
HAL: hal-04396407
Document Type:
Conference conferenceObject<br />Conference papers
Language:
English
Relation:
info:eu-repo/semantics/altIdentifier/arxiv/2305.19920; info:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-031-43990-2_47
DOI:
10.1007/978-3-031-43990-2_47
Rights:
info:eu-repo/semantics/OpenAccess
URL: http://creativecommons.org/licenses/by/
Accession Number:
edshal.hal.04396407v1
Database:
HAL

Further Information

Musculoskeletal diseases such as sarcopenia and osteoporosis are major obstacles to health during aging. Although dual-energy X-ray absorptiometry (DXA) and computed tomography (CT) can be used to evaluate musculoskeletal conditions, frequent monitoring is difficult due to the cost and accessibility (as well as high radiation exposure in the case of CT). We propose a method (named MSKdeX) to estimate fine-grained muscle properties from a plain X-ray image, a low-cost, low-radiation, and highly accessible imaging modality, through musculoskeletal decomposition leveraging fine-grained segmentation in CT. We train a multi-channel quantitative image translation model to decompose an X-ray image into projections of CT of individual muscles to infer the lean muscle mass and muscle volume. We propose the object-wise intensity-sum loss, a simple yet surprisingly effective metric invariant to muscle deformation and projection direction, utilizing information in CT and X-ray images collected from the same patient. While our method is basically an unpaired image-to-image translation, we also exploit the nature of the bone’s rigidity, which provides the paired data through 2D-3D rigid registration, adding strong pixel-wise supervision in unpaired training. Through the evaluation using a 539-patient dataset, we showed that the proposed method significantly outperformed conventional methods. The average Pearson correlation coefficient between the predicted and CT-derived ground truth metrics was increased from 0.460 to 0.863. We believe our method opened up a new musculoskeletal diagnosis method and has the potential to be extended to broader applications in multi-channel quantitative image translation tasks.