Treffer: Fast Semi-supervised Unmixing using Non-convex Optimization

Title:
Fast Semi-supervised Unmixing using Non-convex Optimization
Contributors:
Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Apprentissage de modèles à partir de données massives (Thoth), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Kuntzmann (LJK), Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), ANR-19-P3IA-0003,MIAI,MIAI @ Grenoble Alpes(2019), European Project: 101087696,APHELAIA
Publisher Information:
HAL CCSD, 2024.
Publication Year:
2024
Collection:
collection:UGA
collection:CNRS
collection:INRIA
collection:INPG
collection:INRIA-RHA
collection:INSMI
collection:INRIA_TEST
collection:LJK
collection:LJK_GI
collection:TESTALAIN1
collection:INRIA2
collection:LJK-GI-THOTH
collection:INRIA-RENGRE
collection:MIAI
collection:PNRIA
collection:UGA-EPE
collection:ANR
collection:INRIA-ALLEMAGNE
Original Identifier:
ARXIV: 2401.12609
HAL: hal-04409409
Document Type:
E-Ressource preprint<br />Preprints<br />Working Papers
Language:
English
Relation:
info:eu-repo/semantics/altIdentifier/arxiv/2401.12609; info:eu-repo/grantAgreement//101087696/EU/ERC/APHELAIA
Rights:
info:eu-repo/semantics/OpenAccess
URL: http://creativecommons.org/licenses/by/
Accession Number:
edshal.hal.04409409v1
Database:
HAL

Weitere Informationen

In this paper, we introduce a novel linear model tailored for semisupervised/library-based unmixing. Our model incorporates considerations for library mismatch while enabling the enforcement of the abundance sum-to-one constraint (ASC). Unlike conventional sparse unmixing methods, this model involves nonconvex optimization, presenting significant computational challenges. We demonstrate the efficacy of Alternating Methods of Multipliers (ADMM) in cyclically solving these intricate problems. We propose two semisupervised unmixing approaches, each relying on distinct priors applied to the new model in addition to the ASC: sparsity prior and convexity constraint. Our experimental results validate that enforcing the convexity constraint outperforms the sparsity prior for the endmember library. These results are corroborated across three simulated datasets (accounting for spectral variability and varying pixel purity levels) and the Cuprite dataset. Additionally, our comparison with conventional sparse unmixing methods showcases considerable advantages of our proposed model, which entails nonconvex optimization. Notably, our implementations of the proposed algorithms—fast semisupervised unmixing (FaSUn) and sparse unmixing using soft-shrinkage (SUnS)—prove considerably more efficient than traditional sparse unmixing methods. SUnS and FaSUn were implemented using PyTorch and provided in a dedicated Python package called Fast Semisupervised Unmixing (FUnmix), which is open-source and available at https://github.com/BehnoodRasti/FUnmix