Treffer: Representation and comparison of chemotherapy protocols with ChemoKG and graph embeddings

Title:
Representation and comparison of chemotherapy protocols with ChemoKG and graph embeddings
Contributors:
Health data- and model- driven Knowledge Acquisition (HeKA), Centre Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre de Recherche des Cordeliers (CRC (UMR_S_1138 / U1138)), École Pratique des Hautes Études (EPHE), Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Université Paris Cité (UPCité)-École Pratique des Hautes Études (EPHE), Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Université Paris Cité (UPCité), Centre de Recherche des Cordeliers (CRC (UMR_S_1138 / U1138)), Hôpital Européen Georges Pompidou [APHP] (HEGP), Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Hôpitaux Universitaires Paris Ouest - Hôpitaux Universitaires Île de France Ouest (HUPO), Université Paris Cité (UPCité), COMBO project, ANR-22-PESN-0007,ShareFAIR,Sharing reliable protocols to transform datasets into gold standards: Application to Neuro-Vascular Pathologies(2022), ANR-22-PESN-0008,NEUROVASC,Vers la médecine 5P pour réduire l'impact de l'anévrisme intracrânien et de l'AVC(2022)
Source:
SWAT4HCLS 2024 - 15th International Semantic Web Applications and Tools for Health Care and Life Sciences Conference, Feb 2024, Leiden, Netherlands
Publisher Information:
CCSD, 2024.
Publication Year:
2024
Collection:
collection:EPHE
collection:INRIA
collection:INRIA-ROCQ
collection:APHP
collection:LORIA2
collection:TESTALAIN1
collection:CORDELIERS
collection:INRIA2
collection:PSL
collection:INRIA-PSL
collection:CHU-UNIV-PARIS5
collection:SORBONNE-UNIVERSITE
collection:SORBONNE-UNIV
collection:SU-SCIENCES
collection:TEST-DEV
collection:UNIV-PARIS
collection:UNIVERSITE-PARIS
collection:UP-SANTE
collection:EPHE-PSL
collection:SU-TI
collection:ANR
collection:ALLIANCE-SU
collection:PEPR_SANTENUM
collection:SUPRA_BIOLOGIE
Subject Geographic:
Original Identifier:
HAL: hal-04455155
Document Type:
Konferenz conferenceObject<br />Conference papers
Language:
English
Rights:
info:eu-repo/semantics/OpenAccess
URL: http://creativecommons.org/licenses/by-nc/
Accession Number:
edshal.hal.04455155v1
Database:
HAL

Weitere Informationen

Background: Chemotherapy, a central cancer treatment, employs antineoplastic drugs to hinder cancer cell replication by disrupting DNA synthesis or mitosis. Chemotherapies follow complex protocols composed of cycles of treatment where antineoplastic and adjuvant drugs prescribed at different doses and times. Various protocols exist, with either small or large and numerous variations to others, making it hard to compare chemotherapies to each other, comparing their differential outcomes, and in the end choosing the most adapted one for a particular patient. Method: We propose ChemoKG, a knowledge graph for chemotherapy protocols that encompasses first administration programs such as drugs, dosages, treatment durations, and second drug properties and classes imported from ChEBI, DrugBank and the ATC classification. Three resources on drugs provide complementary hierarchies and chemical properties that help to better identify similar chemotherapy protocols. To this aim, we tested on ChemoKG a novel graph embedding method employing graph neural networks (GNNs) to compare nodes in the graph that represent protocols. Unlike previous approaches that focus on triple-based embeddings, the proposed method captures subgraph structures inherited from the aggregation scheme in GNNs. Results: The resulting knowledge graph encompasses 329,164 triples with 99,901 entities and 75 predicates including 1,358 chemotherapy protocols and 226 anti-cancer drugs. We performed a cluster analysis of protocol embeddings learned on ChemoKG, to propose groups of similar protocols. This will contribute in facilitating the comparison of chemotherapy themselves, and by extension to their potential effectiveness. Additionally, it should aid in analyzing gaps between commonly accepted protocols and their real-world implementation.