Treffer: Linking Appellate Judgments to Tribunal Judgments – Benchmarking Different ML Techniques

Title:
Linking Appellate Judgments to Tribunal Judgments – Benchmarking Different ML Techniques
Contributors:
Détection, évaluation, gestion des risques CHROniques et éMErgents (CHROME) - Nîmes Université (CHROME), Nîmes Université (UNIMES), Centre Européen de Droit et d'Economie (CEDE), ESSEC Business School, Enrico Francesconi, Georg Borges, Christoph Sorge, ANR-20-CE38-0013,LAWBOT,APPRENTISSAGE PROFOND POUR LA MODELISATION PREDICTIVE DE LA JURISPRUDENCE(2020)
Source:
Enrico Francesconi; Georg Borges; Christoph Sorge. Legal Knowledge and Information Systems. :33-42
Publisher Information:
CCSD; IOS Press, 2022.
Publication Year:
2022
Collection:
collection:SHS
collection:ESSEC
collection:AO-DROIT
collection:UNIMES
collection:ANR
Original Identifier:
HAL: hal-04546611
Document Type:
Buch bookPart<br />Book sections
Language:
English
ISBN:
978-1-64368-364-5
Relation:
info:eu-repo/semantics/altIdentifier/doi/10.3233/FAIA220446
DOI:
10.3233/FAIA220446
Rights:
info:eu-repo/semantics/OpenAccess
URL: http://creativecommons.org/licenses/by-nc/
Accession Number:
edshal.hal.04546611v1
Database:
HAL

Weitere Informationen

The typical judicial pathway is made of a judgment by a tribunal followed by a decision of an appellate court. However, the link between both documents is sometimes difficult to establish because of missing, incorrect or badly formatted references, pseudonymization, or poor drafting specific to each jurisdiction. This paper first shows that it is possible to link court decisions related to the same case although they are from different jurisdictions using manual rules. The use of deep learning afterwards significantly reduces the error rate in this task. The experiments are conducted between the Commercial Court of Paris and Appellate Courts.