Laboratoire des sciences de l'ingénieur, de l'informatique et de l'imagerie (ICube), École Nationale du Génie de l'Eau et de l'Environnement de Strasbourg (ENGEES)-Université de Strasbourg (UNISTRA)-Hôpitaux Universitaires de Strasbourg (HUS)-Institut National des Sciences Appliquées - Strasbourg (INSA Strasbourg), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)
Source:
27th International Conference on Knowledge Based and Intelligent Information and Engineering Sytems (KES 2023). :1094-1103
Mining frequent patterns in multigraphs is a challenging task in graph analysis with numerous real-world applications. This paper introduces a novel framework for frequent pattern mining on multi-graphs using the multi-SPMiner method. The approach is inspired by SPMiner, which was the first approach to employ deep learning in graph motif mining tasks. Multi-SPMiner builds on this foundation and focuses on the extraction of frequent motifs in single multi-graphs, specifically spatiotemporal graphs. Multi-SPMiner employs a two-step approach to extract the most frequent motifs in a graph with a high support value. In the first step, it embeds the nodes into an embedding order space, and in the second step, it performs a walk in the space to obtain the frequent motifs by iteratively growing the motif starting from a single node. The results obtained highlight the effectiveness of the proposed approach in identifying frequent motifs in single multigraphs, which is a crucial task in many real-world applications. Moreover, we demonstrate that our method is a generalization of SPMiner by testing it on single connection graphs.