Result: The ddeq Python library for point source quantification from remote sensing images (version 1.0)

Title:
The ddeq Python library for point source quantification from remote sensing images (version 1.0)
Contributors:
Swiss Federal Laboratories for Materials Science and Technology [Dübendorf] (EMPA), Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Modélisation INVerse pour les mesures atmosphériques et SATellitaires (SATINV), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Source:
Geoscientific Model Development. 17(12):4773-4789
Publisher Information:
CCSD; European Geosciences Union, 2024.
Publication Year:
2024
Collection:
collection:CEA
collection:INSU
collection:CNRS
collection:GIP-BE
collection:UVSQ
collection:CEA-UPSAY
collection:LSCE
collection:UNIV-PARIS-SACLAY
collection:LSCE-CEA
collection:UVSQ-UPSACLAY
collection:UNIVERSITE-PARIS-SACLAY
collection:GS-GEOSCIENCES
collection:GS-BIOSPHERA
collection:INSTITUT-SCIENCES-LUMIERE
collection:PSACLAY-TEST
Original Identifier:
HAL: hal-04621725
Document Type:
Journal article<br />Journal articles
Language:
English
ISSN:
1991-9603
1991-959X
Relation:
info:eu-repo/semantics/altIdentifier/doi/10.5194/gmd-17-4773-2024
DOI:
10.5194/gmd-17-4773-2024
Rights:
info:eu-repo/semantics/OpenAccess
Accession Number:
edshal.hal.04621725v1
Database:
HAL

Further Information

. Atmospheric emissions from anthropogenic hotspots, i.e., cities, power plants and industrial facilities, can be determined from remote sensing images obtained from airborne and space-based imaging spectrometers. In this paper, we present a Python library for data-driven emission quantification (ddeq) that implements various computationally light methods such as the Gaussian plume inversion, cross-sectional flux method, integrated mass enhancement method and divergence method. The library provides a shared interface for data input and output and tools for pre- and post-processing of data. The shared interface makes it possible to easily compare and benchmark the different methods. The paper describes the theoretical basis of the different emission quantification methods and their implementation in the ddeq library. The application of the methods is demonstrated using Jupyter notebooks included in the library, for example, for NO2 images from the Sentinel-5P/TROPOMI satellite and for synthetic CO2 and NO2 images from the Copernicus CO2 Monitoring (CO2M) satellite constellation. The library can be easily extended for new datasets and methods, providing a powerful community tool for users and developers interested in emission monitoring using remote sensing images.