Treffer: On predicting 3D bone locations inside the human body

Title:
On predicting 3D bone locations inside the human body
Contributors:
Capture and Analysis of Shapes in Motion (MORPHEO), Centre Inria de l'Université Grenoble Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Kuntzmann (LJK), Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP), Université Grenoble Alpes (UGA), Max Planck Institute for Intelligent Systems [Tübingen], Max-Planck-Gesellschaft, ANR-19-CE23-0003,SEMBA,Des corps en mouvements vers l'anatomie(2019)
Source:
MICCAI 2024 - 27th International Conference on Medical Image Computing and Computer Assisted Intervention. :336-346
Publisher Information:
CCSD; Springer, 2024.
Publication Year:
2024
Collection:
collection:UGA
collection:CNRS
collection:INRIA
collection:INPG
collection:INRIA-RHA
collection:INSMI
collection:INRIA_TEST
collection:LJK
collection:LJK_GI
collection:LJK_GI_MORPHEO
collection:TESTALAIN1
collection:INRIA2
collection:INRIA-RENGRE
collection:UGA-EPE
collection:ANR
collection:INRIA-ALLEMAGNE
collection:ANR-IA-19
collection:ANR-IA
collection:TEST-UGA
Subject Geographic:
Original Identifier:
HAL: hal-04698470
Document Type:
Konferenz conferenceObject<br />Conference papers
Language:
English
Relation:
info:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-031-72384-1_32
DOI:
10.1007/978-3-031-72384-1_32
Rights:
info:eu-repo/semantics/OpenAccess
URL: http://creativecommons.org/licenses/by/
Accession Number:
edshal.hal.04698470v1
Database:
HAL

Weitere Informationen

Knowing the precise location of the bones inside the human body is key in several medical tasks, such as patient placement inside an imaging device or surgical navigation inside a patient. Our goal is to predict the bone locations using only an external 3D body surface observation. Existing approaches either validate their predictions on 2D data (X-rays) or with pseudo-ground truth computed from motion capture using biomechanical models. Thus, methods either suffer from a 3D-2D projection ambiguity or directly lack validation on clinical imaging data. In this work, we start with a dataset of segmented skin and long bones obtained from 3D full body MRI images that we refine into individual bone segmentations. To learn the skin to bones correlations, one needs to register the paired data. Few anatomical models allow to register a skeleton and the skin simultaneously. One such method, SKEL, has a skin and skeleton that is jointly rigged with the same pose parameters. However, it lacks the flexibility to adjust the bone locations inside its skin. To address this, we extend SKEL into SKEL-J to allow its bones to fit the segmented bones while its skin fits the segmented skin. These precise fits allow us to train SKEL-J to more accurately infer the anatomical joint locations from the skin surface. Our qualitative and quantitative results show how our bone location predictions are more accurate than all existing approaches. To foster future research, we make available for research purposes the individual bone segmentations, the fitted SKEL-J models as well as the new inference methods at https://3dbones.is.tue.mpg.de.