Treffer: A Novel Hybrid Framework for Realistic UAV Detection using a Mixed RF Signal Database

Title:
A Novel Hybrid Framework for Realistic UAV Detection using a Mixed RF Signal Database
Contributors:
Self-organizing Future Ubiquitous Network (FUN), Centre Inria de l'Université de Lille, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), ANR-21-ASIA-0002,DEPOSIA,Intelligence Artificielle pour la détection et géolocalisation d'une source électromagnétique illégitime(2021)
Source:
FNWF 2024 - IEEE Future Networks World Forum, Oct 2024, Dubai, United Arab Emirates
Publisher Information:
CCSD, 2024.
Publication Year:
2024
Collection:
collection:INRIA
collection:INRIA-LILLE
collection:INRIA_TEST
collection:TESTALAIN1
collection:INRIA2
collection:ANR
collection:ANR-IA-21
collection:ANR-IA
Subject Geographic:
Original Identifier:
HAL: hal-04702908
Document Type:
Konferenz conferenceObject<br />Conference papers
Language:
English
Rights:
info:eu-repo/semantics/OpenAccess
URL: http://creativecommons.org/licenses/by/
Accession Number:
edshal.hal.04702908v1
Database:
HAL

Weitere Informationen

Advances in Unmanned Aerial Vehicles (UAVs) empower a plethora of applications but also raise significant security and privacy challenges. Effective UAVs detection systems are crucial for mitigating these risks. This paper deals with this problem and tackles the challenges associated with real-world testing and the limitations of existing simulation methodologies for validating and evaluating UAVs detection protocols. A novel, realistic, and extensible framework is introduced, which includes a MATLAB-based surveillance system, a Python-based detection module utilizing Stacked Denoising Autoencoder (SDAE) and Local Outlier Factor (LOF) algorithms, and a hybrid database of both real and synthetic wireless RF signals. The synthetic wireless dataset is generated by the proposed surveillance system module. The alignment between the synthetic and real data is validated with an average Mean Squared Error (MSE) of less than 0.25. The detection module proves highly effective, achieving 96% accuracy in correctly classifying Wi-Fi signals and 88% accuracy in identifying UAV signals as anomalies (outliers). This innovative approach facilitates ongoing research and development in UAV detection, with the extensibility to incorporate new RF signal types and UAV models.