Treffer: PCA for Point Processes

Title:
PCA for Point Processes
Contributors:
Laboratoire de biologie et modélisation de la cellule (LBMC UMR 5239), École normale supérieure de Lyon (ENS de Lyon), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), CEntre de REcherches en MAthématiques de la DEcision (CEREMADE), Université Paris Dauphine-PSL, Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), ANR-18-CE45-0023,SingleStatOmics,Statistique et Apprentissage pour la génomique en cellules uniques(2018), ANR-22-PESN-0002,AI4scMED,MultiScale AI for SingleCell-Based Precision Medicine(2022)
Publisher Information:
CCSD, 2025.
Publication Year:
2025
Collection:
collection:ENS-LYON
collection:CNRS
collection:UNIV-LYON1
collection:UNIV-DAUPHINE
collection:INSMI
collection:CEREMADE
collection:PSL
collection:UDL
collection:UNIV-LYON
collection:UNIV-DAUPHINE-PSL
collection:ANR
collection:PEPR_SANTENUM
Original Identifier:
ARXIV: 2404.19661
HAL: hal-04740986
Document Type:
E-Ressource preprint<br />Preprints<br />Working Papers
Language:
English
Relation:
info:eu-repo/semantics/altIdentifier/arxiv/2404.19661; info:eu-repo/semantics/altIdentifier/doi/10.48550/arXiv.2404.19661
DOI:
10.48550/arXiv.2404.19661
Rights:
info:eu-repo/semantics/OpenAccess
Accession Number:
edshal.hal.04740986v2
Database:
HAL

Weitere Informationen

We introduce a novel statistical framework for the analysis of replicated point processes that allows for the study of point pattern variability at a population level. By treating point process realizations as random measures, we adopt a functional analysis perspective and propose a form of functional Principal Component Analysis (fPCA) for point processes. The originality of our method is to base our analysis on the cumulative mass functions of the random measures which gives us a direct and interpretable analysis. Key theoretical contributions include establishing a Karhunen-Loève expansion for the random measures and a Mercer Theorem for covariance measures. We establish convergence in a strong sense, and introduce the concept of principal measures, which can be seen as latent processes governing the dynamics of the observed point patterns. We propose an easy-to-implement estimation strategy of eigenelements for which parametric rates are achieved. We fully characterize the solutions of our approach to Poisson and Hawkes processes and validate our methodology via simulations and diverse applications in seismology, single-cell biology and neurosiences, demonstrating its versatility and effectiveness. Our method is implemented in the pppca R-package.