Treffer: Machine learning for predicting DataCube atomic force microscope (AFM)—MultiDAT-AFM

Title:
Machine learning for predicting DataCube atomic force microscope (AFM)—MultiDAT-AFM
Contributors:
Laboratoire de cristallographie et sciences des matériaux (CRISMAT), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche sur les Matériaux Avancés (IRMA), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Rouen Normandie (UNIROUEN), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Carnot ESP SiCAgeing
Source:
ISTFA 2024 - the 50th International Symposium for Testing and Failure Analysis Conference. :351-357
Publisher Information:
CCSD, 2024.
Publication Year:
2024
Collection:
collection:CEA
collection:CNRS
collection:INSA-ROUEN
collection:ENSI-CAEN
collection:COMUE-NORMANDIE
collection:INC-CNRS
collection:UNIROUEN
collection:ENSICAEN
collection:UNICAEN
collection:CRISMAT
collection:INSA-GROUPE
collection:ROSINE-COQ-GERMANICUS
Subject Terms:
Subject Geographic:
Original Identifier:
HAL: hal-04779848
Document Type:
Konferenz conferenceObject<br />Conference papers
Language:
English
Relation:
info:eu-repo/semantics/altIdentifier/doi/10.31399/asm.cp.istfa2024p0351
DOI:
10.31399/asm.cp.istfa2024p0351
Rights:
info:eu-repo/semantics/OpenAccess
Accession Number:
edshal.hal.04779848v1
Database:
HAL

Weitere Informationen

In nanoscience, techniques based on Atomic Force Microscope (AFM) stand as a cornerstone for exploring local electrical, electrochemical and magnetic properties of microelectronic devices at the nanoscale. As AFM's capabilities evolve, so do the challenges of data analysis. With the aim of developing a prediction model for AFM mappings, based on Machine Learning, this work presents a step towards the analysis and benefit of Big Data recorded in the hyperspectral modes: AFM DataCube. The MultiDAT-AFM solution is an advanced 2000-line Python-based tool designed to tackle the complexities of multi-dimensional measurements and analysis. MultiDAT-AFM offers visualization options, from acquired curves to scanned mappings, animated mappings as movies, and a real 3D-cube representation for the hyperspectral DataCube modes. In addition, MultiDAT-AFM incorporates a Machine Learning algorithm to predict mappings of local properties. After evaluating two supervised Machine Learning algorithms (out of the eight tested) for regression, the Random Forest Regressor model emerged as the best performer. With the refinement step, a root mean square error (RMSE) of 0.18, an R2 value of 0.90 and an execution time of a few minutes were determined. Developed for all AFM DataCube modes, the strategy and demonstration of MultiDAT-AFM are outlined in this article for a silicon integrated microelectronic device dedicated to RF applications and analyzed by DataCube Scanning Spreading Resistance (DCUBE-SSRM).