Treffer: multipers: Multiparameter Persistence for Machine Learning

Title:
multipers: Multiparameter Persistence for Machine Learning
Contributors:
Understanding the Shape of Data (DATASHAPE), Centre Inria d'Université Côte d'Azur, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire de Mathématiques d'Orsay (LMO), Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Centre Inria de l'Université Paris-Saclay, Centre Inria de Saclay, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre Inria de Saclay, Institut National de Recherche en Informatique et en Automatique (Inria), ANR-19-P3IA-0002,3IA@cote d'azur,3IA Côte d'Azur(2019)
Source:
Journal of Open Source Software. 9(103):6773-6773
Publisher Information:
CCSD; Open Journals, 2024.
Publication Year:
2024
Collection:
collection:CNRS
collection:INRIA
collection:INRIA-SOPHIA
collection:INRIA-SACLAY
collection:INSMI
collection:INRIASO
collection:INRIA_TEST
collection:LM-ORSAY
collection:TESTALAIN1
collection:INRIA2
collection:UNIV-PARIS-SACLAY
collection:UNIV-COTEDAZUR
collection:PNRIA
collection:UNIVERSITE-PARIS-SACLAY
collection:3IA-COTEDAZUR
collection:ANR
collection:GS-MATHEMATIQUES
collection:GS-COMPUTER-SCIENCE
collection:PSACLAY-TEST
collection:ANR-IA-19
collection:ANR-IA
Original Identifier:
HAL: hal-04801544
Document Type:
Zeitschrift article<br />Journal articles
Language:
English
ISSN:
2475-9066
Relation:
info:eu-repo/semantics/altIdentifier/doi/10.21105/joss.06773
DOI:
10.21105/joss.06773
Rights:
info:eu-repo/semantics/OpenAccess
URL: http://creativecommons.org/licenses/by/
Accession Number:
edshal.hal.04801544v1
Database:
HAL

Weitere Informationen

multipers is a Python library for Topological Data Analysis, focused on Multiparameter Persistence computation and visualizations for Machine Learning. It features several efficient computational and visualization tools, with integrated, easy to use, auto-differentiable Machine Learning pipelines, that can be seamlessly interfaced with scikit-learn (Pedregosa et al., 2011) and PyTorch (Paszke et al., 2019). This library is meant to be usable for non-experts in Topological or Geometrical Machine Learning. Performance-critical functions are implemented in C++ or in Cython (Behnel et al., 2011-03/2011-04), are parallelizable with TBB (Robison, 2011), and have Python bindings and interface. It can handle a very diverse range of datasets that can be framed into a (finite) multi-filtered simplicial or cell complex, including, e.g., point clouds, graphs, time series, images, etc.