Treffer: multipers: Multiparameter Persistence for Machine Learning
collection:INRIA
collection:INRIA-SOPHIA
collection:INRIA-SACLAY
collection:INSMI
collection:INRIASO
collection:INRIA_TEST
collection:LM-ORSAY
collection:TESTALAIN1
collection:INRIA2
collection:UNIV-PARIS-SACLAY
collection:UNIV-COTEDAZUR
collection:PNRIA
collection:UNIVERSITE-PARIS-SACLAY
collection:3IA-COTEDAZUR
collection:ANR
collection:GS-MATHEMATIQUES
collection:GS-COMPUTER-SCIENCE
collection:PSACLAY-TEST
collection:ANR-IA-19
collection:ANR-IA
URL: http://creativecommons.org/licenses/by/
Weitere Informationen
multipers is a Python library for Topological Data Analysis, focused on Multiparameter Persistence computation and visualizations for Machine Learning. It features several efficient computational and visualization tools, with integrated, easy to use, auto-differentiable Machine Learning pipelines, that can be seamlessly interfaced with scikit-learn (Pedregosa et al., 2011) and PyTorch (Paszke et al., 2019). This library is meant to be usable for non-experts in Topological or Geometrical Machine Learning. Performance-critical functions are implemented in C++ or in Cython (Behnel et al., 2011-03/2011-04), are parallelizable with TBB (Robison, 2011), and have Python bindings and interface. It can handle a very diverse range of datasets that can be framed into a (finite) multi-filtered simplicial or cell complex, including, e.g., point clouds, graphs, time series, images, etc.