Institut d'Électronique et des Technologies du numéRique (IETR), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Nantes Université - Ecole Polytechnique de l'Université de Nantes (Nantes Univ - EPUN), Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ), Systèmes Multi-Agents Coopératifs (IRIT-SMAC), Institut de recherche en informatique de Toulouse (IRIT), Université Toulouse Capitole (UT Capitole), Communauté d'universités et établissements de Toulouse (Comue de Toulouse)-Communauté d'universités et établissements de Toulouse (Comue de Toulouse)-Université Toulouse - Jean Jaurès (UT2J), Communauté d'universités et établissements de Toulouse (Comue de Toulouse)-Communauté d'universités et établissements de Toulouse (Comue de Toulouse)-Université Toulouse III - Paul Sabatier (UT3), Communauté d'universités et établissements de Toulouse (Comue de Toulouse)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Communauté d'universités et établissements de Toulouse (Comue de Toulouse)-Toulouse Mind & Brain Institut (TMBI), Université Toulouse - Jean Jaurès (UT2J), Communauté d'universités et établissements de Toulouse (Comue de Toulouse)-Université Toulouse III - Paul Sabatier (UT3), Communauté d'universités et établissements de Toulouse (Comue de Toulouse)-Université Toulouse Capitole (UT Capitole), Communauté d'universités et établissements de Toulouse (Comue de Toulouse), Université Toulouse III - Paul Sabatier (UT3), École normale supérieure - Rennes (ENS Rennes), Université de Rennes (UR), Systèmes et Applications des Technologies de l'Information et de l'Energie (SATIE), École normale supérieure - Rennes (ENS Rennes)-Conservatoire National des Arts et Métiers [Cnam] (Cnam)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Ecole Normale Supérieure Paris-Saclay (ENS Paris Saclay)-Université Gustave Eiffel-CY Cergy Paris Université (CY), Orange Labs, EDF Labs, SRD [Énergies Réseaux Distribution] (SRD), Centre National de la Recherche Scientifique (CNRS), Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA), Nantes Université (Nantes Univ), ANR-22-CE05-0023,EDEN4SG,Gestion dynamique et efficace de l'énergie pour les smart grids de grande taille(2022)
Due to the decentralisation of energy resources and the electrification of the heat and transport sectors, it is becoming increasingly more difficult for network operators to supervise and manage smart grids. Research points at the development of decentralised energy management tools (e.g., based on artificial intelligence) to develop strategies for the individual decision-making of numerous agents (e.g., smart electric vehicle charging), that aggregated respect the physical constraints of the grid. To train these tools it is therefore necessary to foresee problematic operational states (e.g., under/overvoltage, exceeding the rated powers of line/transformer) which could damage equipment, trigger protections, and cause service disruptions. While this can be done through power flow simulations (i.e., solving a system of non-linear physical equations with a numerical solver [1]), their high computational cost hinders computing speed. An alternative is using a traditional power system simulator to generate labelled datasets in an off-line stage, and then training a data-driven model to act as a surrogate for a fraction of the computational cost of the conventional tools [2]. In this manner, the computing time associated with the training of the AI-based energy management tools is greatly reduced. We compared three state of the art data-driven approaches to identify if an operational point (i.e., electricity demand at each consumption point) is classified as "safe" or "unsafe" (i.e., absence/presence of congestions) [3]. To this end, we propose and evaluate novel data generation strategies, and compare them to the standard random generation approach in the literature, highlighting the inadequacy of the latter when applied to low voltage networks. This is tested on the IEEE European Low-Voltage Test Feeder, with reports on computational times for training and inference, as well as significant improvements in classification performance using alternative data generation strategies. This work is conducted as part of the ANR "EDEN4SG" project under grant agreement ANR-22-CE05-0023.