Treffer: Overview of FungiCLEF 2024: Revisiting Fungi Species Recognition Beyond 0-1 Cost

Title:
Overview of FungiCLEF 2024: Revisiting Fungi Species Recognition Beyond 0-1 Cost
Contributors:
University of West Bohemia [Plzeň ], Scientific Data Management (ZENITH), Centre Inria d'Université Côte d'Azur, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), Université de Perpignan Via Domitia (UPVD)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université de Montpellier Paul-Valéry (UMPV)-Université de Perpignan Via Domitia (UPVD)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université de Montpellier Paul-Valéry (UMPV), Rossum (rossum.ai), Czech Technical University in Prague (CTU), LP and JM supported by the Technology Agency of the Czech Republic, project No. SS05010008 and project No. SS73020004.
Source:
CLEF 2024 Working Notes - 25th Conference and Labs of the Evaluation Forum. :1958-1965
Publisher Information:
CCSD, 2024.
Publication Year:
2024
Collection:
collection:SDE
collection:CNRS
collection:INRIA
collection:UNIV-MONTP3
collection:UNIV-PERP
collection:INRIA-SOPHIA
collection:INRIASO
collection:INRIA_TEST
collection:GIP-BE
collection:TESTALAIN1
collection:ZENITH
collection:LIRMM
collection:INRIA2
collection:UNIV-MONTPELLIER
collection:UNIV-COTEDAZUR
collection:UPVM-TI
collection:UM-2015-2021
collection:UM-EPE
collection:ANTENNE-INRIA-DUM
Subject Geographic:
Original Identifier:
HAL: hal-04852127
Document Type:
Konferenz conferenceObject<br />Conference papers
Language:
English
Rights:
info:eu-repo/semantics/OpenAccess
URL: http://creativecommons.org/licenses/by/
Accession Number:
edshal.hal.04852127v1
Database:
HAL

Weitere Informationen

The third edition of the fungi recognition challenge, FungiCLEF 2024, organized within LifeCLEF, advances the field of mushroom species identification using computer vision and machine learning. Building on the Danish Fungi 2020 dataset and incorporating new data from the CzechFungi app, FungiCLEF 2024 challenges participants to recognize fungi species from images and metadata, focusing on efficient inference and minimalization of edible and poisonous species confusion. The strict limits on computational complexity ensure that the resulting solutions are practical for use in real-world settings with limited computational resources. The competition attracted seven teams, with five outperforming the provided baseline, which was based on the pre-trained EfficientNet-B1 model. This overview paper provides (i) a comprehensive description of the challenge and provided baseline method, (ii) detailed characteristics of the dataset and task specifications, (iii) an examination of the methods employed by contestants, and (iv) a discussion of the competition outcomes. The results highlight incremental advancements in fungi recognition, showcasing innovative approaches and techniques that push the limits of previous work.