Treffer: A Framework for Streaming Event-Log Prediction in Business Processes

Title:
A Framework for Streaming Event-Log Prediction in Business Processes
Contributors:
Laboratoire Méthodes Formelles (LMF), Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Ecole Normale Supérieure Paris-Saclay (ENS Paris Saclay), Centre National de la Recherche Scientifique (CNRS), Ecole Normale Supérieure Paris-Saclay (ENS Paris Saclay), Université Paris-Saclay, Institut universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), ANR-21-CE48-0003,DREAMY,Algorithmes distribués pour les systèmes microbiologiques(2021), ANR-23-CE45-0013,COSTXPRESS,Modèles quantitatifs des coûts d'expression des circuits génétiques synthétiques(2023), ANR-23-PEIA-0006,SAIF,Safe AI through Formal Methods(2023)
Publisher Information:
CCSD, 2025.
Publication Year:
2025
Collection:
collection:CNRS
collection:ENS-CACHAN
collection:CENTRALESUPELEC
collection:UNIV-PARIS-SACLAY
collection:UNIVERSITE-PARIS-SACLAY
collection:ANR
collection:ENS-PARIS-SACLAY
collection:ENS-PSACLAY
collection:GS-COMPUTER-SCIENCE
collection:LMF
collection:LMF-MCS
collection:PEPR_IA
collection:SAIF
collection:ANR-IA-23
collection:ANR-IA
Original Identifier:
HAL: hal-04866045
Document Type:
E-Ressource preprint<br />Preprints<br />Working Papers
Language:
English
Relation:
info:eu-repo/semantics/altIdentifier/doi/10.48550/arXiv.2412.16032
DOI:
10.48550/arXiv.2412.16032
Rights:
info:eu-repo/semantics/OpenAccess
Accession Number:
edshal.hal.04866045v1
Database:
HAL

Weitere Informationen

We present a Python-based framework for event-log prediction in streaming mode, enabling predictions while data is being generated by a business process. The framework allows for easy integration of streaming algorithms, including language models like n-grams and LSTMs, and for combining these predictors using ensemble methods. Using our framework, we conducted experiments on various well-known process-mining data sets and compared classical batch with streaming mode. Though, in batch mode, LSTMs generally achieve the best performance, there is often an n-gram whose accuracy comes very close. Combining basic models in ensemble methods can even outperform LSTMs. The value of basic models with respect to LSTMs becomes even more apparent in streaming mode, where LSTMs generally lack accuracy in the early stages of a prediction run, while basic methods make sensible predictions immediately.