Result: The imperative for reproducibility in building performance simulation research

Title:
The imperative for reproducibility in building performance simulation research
Contributors:
Centre d'Energétique et de Thermique de Lyon (CETHIL), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
Source:
Journal of Building Performance Simulation. :1-7
Publisher Information:
CCSD; Taylor & Francis, 2025.
Publication Year:
2025
Collection:
collection:CNRS
collection:UNIV-LYON1
collection:INSA-LYON
collection:CETHIL
collection:INSA-GROUPE
collection:UDL
collection:UNIV-LYON
Original Identifier:
HAL: hal-04874985
Document Type:
Journal article<br />Journal articles
Language:
English
ISSN:
1940-1493
1940-1507
Relation:
info:eu-repo/semantics/altIdentifier/doi/10.1080/19401493.2024.2441385
DOI:
10.1080/19401493.2024.2441385
Rights:
info:eu-repo/semantics/OpenAccess
URL: http://creativecommons.org/licenses/by/
Accession Number:
edshal.hal.04874985v1
Database:
HAL

Further Information

Building Performance Simulation (BPS) uses advanced computational and data science methods. Reproducibility, the ability to obtain the same results by using the same data and methods, is essential in BPS research to ensure the reliability and validity of scientific results. The benefits of reproducible research include enhanced scientific integrity, faster scientific advancements, and valuable educational resources. Despite its importance, reproducibility in BPS is often overlooked due to technical complexities, insufficient documentation, and cultural barriers such as the lack of incentives for sharing code and data. This paper encourages the reproducibility of articles on computational science and proposes to recognize reproductible code and data, with persistent Digital Object Identifier (DOI), as peer-reviewed archival publications. Practical workflows for achieving reproducibility in BPS are presented for the use of MATLAB and Python.