Result: Simplified Embedding Scheme for Quantum Annealing Applied to Activity Detection in Massive Wireless Networks

Title:
Simplified Embedding Scheme for Quantum Annealing Applied to Activity Detection in Massive Wireless Networks
Contributors:
Modèle et algorithmes pour des systèmes de communication fiables (MARACAS), CITI Centre of Innovation in Telecommunications and Integration of services (CITI), Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre Inria de Lyon, Institut National de Recherche en Informatique et en Automatique (Inria), Université de Lyon-Institut National des Sciences Appliquées (INSA), ANR-22-PEFT-0004,NF-PERSEUS,Power-efficient radio interface for sub-7GHz distributed massive MIMO infrastructUres(2022)
Source:
INFOCOM 2025 - IEEE International Conference on Computer Communications. :1-6
Publisher Information:
CCSD; IEEE, 2025.
Publication Year:
2025
Collection:
collection:INRIA
collection:INSA-LYON
collection:INRIA2
collection:CITI
collection:INSA-GROUPE
collection:UDL
collection:ANR
collection:INRIA-LYS
collection:PEPR_RESEAUX_DU_FUTUR
collection:NF-PERSEUS
Subject Geographic:
Original Identifier:
HAL: hal-04959922
Document Type:
Conference conferenceObject<br />Conference papers
Language:
English
Rights:
info:eu-repo/semantics/OpenAccess
URL: http://creativecommons.org/licenses/by/
Accession Number:
edshal.hal.04959922v2
Database:
HAL

Further Information

Leveraging quantum annealing (QA) for the activity detection problem in massive wireless networks is a promising approach to address the stringent reliability and latency constraints of typical application scenarios. However, the practical implementation of QA on current D-Wave's processors requires embedding the problem. This increases the number of qubits needed for a given network size, which degrades QA performance. In this work, we propose to add a preprocessing step called the threshold method to mitigate the undesired effects of embedding. Our results show that, within limited computational time, this threshold method improves QA's accuracy in solving the activity detection problem. Thus, this is promising to effectively reduce the negative impact of embedding.