Serviceeinschränkungen vom 12.-22.02.2026 - weitere Infos auf der UB-Homepage

Treffer: An approximate dynamic programming approach for multi-stage stochastic lot-sizing under a Decision-Hazard-Decision information structure

Title:
An approximate dynamic programming approach for multi-stage stochastic lot-sizing under a Decision-Hazard-Decision information structure
Contributors:
Lhyfe, Laboratoire Interdisciplinaire des Sciences du Numérique (LISN), Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Modélisation, Optimisation et DEcision pour la Logistique, l'Industrie et les Services (LS2N - équipe MODELIS), Laboratoire des Sciences du Numérique de Nantes (LS2N), Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-NANTES UNIVERSITÉ - École Centrale de Nantes (Nantes Univ - ECN), Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes université - UFR des Sciences et des Techniques (Nantes univ - UFR ST), Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique), Nantes Université (Nantes Univ)
Source:
Discrete Applied Mathematics. 379:355-378
Publisher Information:
CCSD, 2026.
Publication Year:
2026
Collection:
collection:CNRS
collection:EC-NANTES
collection:UNAM
collection:CENTRALESUPELEC
collection:TDS-MACS
collection:LS2N
collection:UNIV-PARIS-SACLAY
collection:INSTITUTS-TELECOM
collection:UNIVERSITE-PARIS-SACLAY
collection:LISN
collection:GS-COMPUTER-SCIENCE
collection:LISN-ROCS
collection:LS2N-MODELIS
collection:NANTES-UNIVERSITE
collection:NANTES-UNIV
Original Identifier:
HAL: hal-04987947
Document Type:
Zeitschrift article<br />Journal articles
Language:
English
Relation:
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.dam.2025.08.051
DOI:
10.1016/j.dam.2025.08.051
Rights:
info:eu-repo/semantics/OpenAccess
URL: http://creativecommons.org/licenses/by/
Accession Number:
edshal.hal.04987947v3
Database:
HAL

Weitere Informationen

This work studies a combinatorial optimization problem encountered in industrial production planning: the single-item multi-resource lot-sizing problem with inventory bounds and lost sales. The demand to be satisfied by the production plan is subject to uncertainty and only probabilistically known. We consider a multi-stage decision process with a Decision-Hazard-Decision information structure in which decisions are made at each stage both before and after the uncertainty is revealed. Such a setting has not yet been studied for stochastic lot-sizing problems, and the resulting problem is modeled as a multi-stage stochastic integer program. We propose a solution approach based on an approximate stochastic dynamic programming algorithm. It relies on a decomposition of the problem into single-stage sub-problems and on the estimation at each stage of the expected future costs. Due to the Decision-Hazard-Decision information structure, each nested single-stage sub-problem is itself a two-stage stochastic integer program. We therefore introduce a Benders decomposition scheme to reduce the computational effort required to solve each nested sub-problem, and present a specialpurpose polynomial-time algorithm to efficiently solve the single-scenario second-stage sub-problems involved in the Benders decomposition. The results of extensive simulation experiments carried out on large-size randomly generated instances are reported. They demonstrate the practical benefit, in terms of the actual production cost, of using the proposed approach as compared to a naive deterministic optimization approach based on the expected demand.