Serviceeinschränkungen vom 12.-22.02.2026 - weitere Infos auf der UB-Homepage

Treffer: A Comprehensive Framework for the Prediction of Intra-Operative Hypotension

Title:
A Comprehensive Framework for the Prediction of Intra-Operative Hypotension
Contributors:
GIPSA - Modelling and Optimal Decision for Uncertain Systems (GIPSA-MODUS), GIPSA Pôle Automatique et Diagnostic (GIPSA-PAD), Grenoble Images Parole Signal Automatique (GIPSA-lab), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP), Université Grenoble Alpes (UGA)-Grenoble Images Parole Signal Automatique (GIPSA-lab), Université Grenoble Alpes (UGA), VERIMAG (VERIMAG - IMAG), GIPSA - Apprentissage, Classification, Traitement d'Images et de Vidéos (GIPSA-ACTIV), GIPSA Pôle Sciences des Données (GIPSA-PSD), Centre Hospitalier Universitaire [CHU Grenoble] (CHUGA), ANR-11-LABX-0025,PERSYVAL-lab,Systemes et Algorithmes Pervasifs au confluent des mondes physique et numérique(2011)
Source:
IEEE Journal of Biomedical and Health Informatics. :1-13
Publisher Information:
CCSD; Institute of Electrical and Electronics Engineers, 2025.
Publication Year:
2025
Collection:
collection:UGA
collection:IMAG
collection:CNRS
collection:INPG
collection:GIPSA
collection:VERIMAG
collection:PERSYVAL-LAB
collection:GIPSA-PAD
collection:GIPSA-PSD
collection:GIPSA-MODUS
collection:GIPSA-ACTIV
collection:UGA-EPE
collection:ANR
collection:TEST-UGA
Original Identifier:
HAL: hal-04990632
Document Type:
Zeitschrift article<br />Journal articles
Language:
English
ISSN:
2168-2194
Relation:
info:eu-repo/semantics/altIdentifier/doi/10.1109/JBHI.2025.3583044
DOI:
10.1109/JBHI.2025.3583044
Rights:
info:eu-repo/semantics/OpenAccess
URL: http://creativecommons.org/licenses/by-nc/
Accession Number:
edshal.hal.04990632v1
Database:
HAL

Weitere Informationen

In this paper, the problem of intra-operative hypotension (IOH) prediction is addressed. Recent studies on the Hypotension Prediction Index have demonstrated a gap between the results presented during model development and clinical evaluation. Thus, there is a need for better collaboration between data scientists and clinicians who need to agree on a common basis. In this contribution, we propose a comprehensive framework for IOH prediction: to address several issues inherent to the commonly used fixed-time-to-onset approach in the literature, a sliding window approach is suggested. The risk prediction problem is formalized with consistent precision-recall metrics rather than the receiver-operator characteristic. For illustration, a standard machine learning method is applied using two different datasets from non-cardiac and cardiac surgery. Training is done on a part of the non-cardiac surgery dataset and tests are performed separately on the rest of the non-cardiac dataset and cardiac dataset. Compared to a realistic clinical baseline, the proposed method achieves a significant improvement on the non-cardiac surgeries (precision of 42% compared to 28% for a recall of 24%). For cardiac surgery, this improvement is less significant but still demonstrate the generalization of the model.