Serviceeinschränkungen vom 12.-22.02.2026 - weitere Infos auf der UB-Homepage

Treffer: Automated Processing of Medication Error Reports with a GPT Transformer Model

Title:
Automated Processing of Medication Error Reports with a GPT Transformer Model
Contributors:
Centre Génie Industriel (CGI), IMT École nationale supérieure des Mines d'Albi-Carmaux (IMT Mines Albi), Institut Mines-Télécom [Paris] (IMT)-Communauté d'universités et établissements de Toulouse (Comue de Toulouse)-Institut Mines-Télécom [Paris] (IMT)-Communauté d'universités et établissements de Toulouse (Comue de Toulouse), Laboratoire MARS (Modeling of Automated Reasoning Systems) [Université de Sousse], Institut Supérieur d'Informatique et des Techniques de Communication (Université de Sousse) (ISITCom), جامعة سوسة = Université de Sousse = University of Sousse (USO)-جامعة سوسة = Université de Sousse = University of Sousse (USO), جامعة سوسة = Université de Sousse = University of Sousse (USO), Atout Majeur Concept, Centre Hospitalier Intercommunal Castres-Mazamet (CHIC-CM), Institut national universitaire Champollion (INUC), Communauté d'universités et établissements de Toulouse (Comue de Toulouse)
Source:
2024 IEEE/ACS - 21st International Conference on Computer Systems and Applications (AICCSA). :1-6
Publisher Information:
CCSD; IEEE, 2024.
Publication Year:
2024
Collection:
collection:MINES-ALBI
collection:EMAC
collection:CGI
collection:INUC
collection:INSTITUTS-TELECOM
collection:INSTITUT-MINES-TELECOM
Subject Geographic:
Original Identifier:
HAL: hal-04998660
Document Type:
Konferenz conferenceObject<br />Conference papers
Language:
English
ISBN:
979-83-315-1825-7
Relation:
info:eu-repo/semantics/altIdentifier/doi/10.1109/AICCSA63423.2024.10912561
DOI:
10.1109/AICCSA63423.2024.10912561
Rights:
info:eu-repo/semantics/OpenAccess
Accession Number:
edshal.hal.04998660v1
Database:
HAL

Weitere Informationen

Because of their potentially serious consequences, Medication errors (ME) represent a major challenge for health-care facilities. To manage these errors and minimize their seriousness, healthcare professionals follow a collaborative management process that relies on reporting and then analyzing the reports filled in by them via various reporting tools, both digital and paper-based. These tools can be customized requiring specific information to be entered in multiple forms with commonly the presence of textual descriptions to fill in a free-text field. Therefore, text analysis is crucial for thoroughly understanding and effectively analyzing medication errors. Given the large volume of reports to be quickly processed, it is essential to help healthcare professionals prioritize which ME to analyze. In this context, we propose, in this work, processing ME reports with natural language processing tasks using Transformer models such as GPT. In this study, we present the extraction of key information from the reports to help structure textual descriptions of ME with the GPT-4 transformer model. The results obtained show the potential of this model to extract relevant information from ME descriptions in French language without any deep fine-tuning