Treffer: Neural semi-Lagrangian method for high-dimensional advection-diffusion problems

Title:
Neural semi-Lagrangian method for high-dimensional advection-diffusion problems
Contributors:
Apprentissage automatique pour des méthodes numériques optimisées (MACARON), Institut de Recherche Mathématique Avancée (IRMA), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Centre Inria de l'Université de Lorraine, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), ANR-23-PEIA-0004,PDE-AI,Numerical analysis, optimal control and optimal transport for AI(2023), ANR-22-EXNU-0002,Exa-MA,Methods and Algorithms for Exascale(2022), ANR-22-CE25-0017,OptiTrust,Production de code haute performance digne de confiance à travers des transformations source-à-source(2022)
Source:
Computer Methods in Applied Mechanics and Engineering. :118481-118481
Publisher Information:
CCSD; Elsevier, 2026.
Publication Year:
2026
Collection:
collection:CNRS
collection:INRIA
collection:IRMA
collection:INSMI
collection:UNIV-STRASBG
collection:INRIA_TEST
collection:INRIA-NANCY-GRAND-EST
collection:TESTALAIN1
collection:UNIV-LORRAINE
collection:INRIA2
collection:TDS-MACS
collection:SITE-ALSACE
collection:IRMAPROBA
collection:IRMAMOCO
collection:ANR
collection:PEPR_IA
collection:NUMPEX
collection:PDE-AI
collection:ANR-IA-23
collection:ANR-IA
collection:UNIVOAK
Original Identifier:
HAL: hal-05051195
Document Type:
Zeitschrift article<br />Journal articles
Language:
English
ISBN:
978-2-02-511848-9
2-02-511848-1
ISSN:
0045-7825
1879-2138
Relation:
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.cma.2025.118481
DOI:
10.1016/j.cma.2025.118481
Rights:
info:eu-repo/semantics/OpenAccess
URL: http://creativecommons.org/licenses/by-nc-nd/
Accession Number:
edshal.hal.05051195v4
Database:
HAL

Weitere Informationen

This work is devoted to the numerical approximation of high-dimensional advection-diffusion equations. It is well-known that classical methods, such as the finite volume method, suffer from the curse of dimensionality, and that their time step is constrained by a stability condition. The semi-Lagrangian method is known to overcome the stability issue, while recent time-discrete neural network-based approaches overcome the curse of dimensionality. In this work, we propose a novel neural semi-Lagrangian method that combines these last two approaches. It relies on projecting the initial condition onto a finite-dimensional neural space, and then solving an optimization problem, involving the backwards characteristic equation, at each time step. It is particularly well-suited for implementation on GPUs, as it is fully parallelizable and does not require a mesh. We provide rough error estimates, present several high-dimensional numerical experiments to assess the performance of our approach, and compare it to other neural methods.