Treffer: A historical perspective on Schützenberger-Pinsker inequalities (extended version)

Title:
A historical perspective on Schützenberger-Pinsker inequalities (extended version)
Authors:
Contributors:
Communications Numériques (COMNUM), Laboratoire Traitement et Communication de l'Information (LTCI), Institut Mines-Télécom [Paris] (IMT)-Télécom Paris, Institut Mines-Télécom [Paris] (IMT)-Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-Institut Mines-Télécom [Paris] (IMT)-Télécom Paris, Institut Mines-Télécom [Paris] (IMT)-Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris), Mathématiques de l'Information et des Communications (MIC), Département Communications & Electronique (COMELEC), Télécom ParisTech
Source:
information geometry. 7(S2):737-779
Publisher Information:
CCSD; Springer, 2024.
Publication Year:
2024
Collection:
collection:ENST
collection:TELECOM-PARISTECH
collection:LTCI
collection:COMELEC
collection:COMNUM
collection:IP_PARIS
collection:INSTITUTS-TELECOM
collection:INSTITUT-MINES-TELECOM
collection:MIC-TELECOM-PARIS
collection:DEPARTEMENT-DE-MATHEMATIQUES
collection:IP-PARIS-MATHEMATIQUES
collection:IP-PARIS-INFORMATION-COMMUNICATION-ELECTRONIQUE
collection:IP-PARIS-INFORMATIQUE-DONNEES-ET-IA
Original Identifier:
HAL: hal-05074248
Document Type:
Zeitschrift article<br />Journal articles
Language:
English
ISSN:
2511-2481
Relation:
info:eu-repo/semantics/altIdentifier/doi/10.1007/s41884-024-00138-z
DOI:
10.1007/s41884-024-00138-z
Rights:
info:eu-repo/semantics/OpenAccess
Accession Number:
edshal.hal.05074248v1
Database:
HAL

Weitere Informationen

This paper presents a tutorial overview of so-called Pinsker inequalities which establisha precise relationship between information and statistics, and whose use have becomeubiquitous in many applications. According to Stigler’s law of eponymy, no scientificdiscovery is named after its original discoverer. Pinsker’s inequality is no exception:Years before the publication of Pinsker’s book in 1960, the French medical doctor,geneticist, epidemiologist, and mathematician Marcel-Paul (Marco) Schützenberger,in his 1953 doctoral thesis, not only proved what is now called Pinsker’s inequality(with the optimal constant that Pinsker himself did not establish) but also the optimalsecond-order improvement, more than a decade before Kullback’s derivation of thesame inequality. We review Schützenberger and Pinsker contributions as well as thoseof Volkonskii and Rozanov, Sakaguchi, McKean, Csiszár, Kullback, Kemperman,Vajda, Bretagnolle and Huber, Krafft and Schmitz, Toussaint, Reid and Williamson,Gilardoni, as well as the optimal derivation of Fedotov, Harremoës, and Topsøe. Wealso present some historical elements on the life and work of Schützenberger, anddiscuss an interesting problem of an erroneous constant in the Schützenberger-Pinskerinequality.