Result: Optimal estimators of cross-partial derivatives and surrogates of functions

Title:
Optimal estimators of cross-partial derivatives and surrogates of functions
Contributors:
UMR Espace-Dev Guyane, UMR 228 Espace-Dev, Espace pour le développement, Institut de Recherche pour le Développement (IRD)-Université de Perpignan Via Domitia (UPVD)-Avignon Université (AU)-Université de La Réunion (UR)-Université de la Nouvelle-Calédonie (UNC)-Université de Guyane (UG)-Université des Antilles (UA)-Université de Montpellier (UM)-Institut de Recherche pour le Développement (IRD)-Université de Perpignan Via Domitia (UPVD)-Avignon Université (AU)-Université de La Réunion (UR)-Université de la Nouvelle-Calédonie (UNC)-Université de Guyane (UG)-Université des Antilles (UA)-Université de Montpellier (UM), Université de Guyane (UG)
Source:
Stats. 7(3):697-718
Publisher Information:
CCSD; MDPI, 2024.
Publication Year:
2024
Collection:
collection:IRD
collection:UNIV-AVIGNON
collection:UNIV-AG
collection:AFRIQ
collection:UNIV-PERP
collection:UNIV-NC
collection:ESPACE-DEV
collection:GUYANE
collection:UNIV-MONTPELLIER
collection:UM-2015-2021
collection:UM-EPE
Original Identifier:
HAL: hal-05076529
Document Type:
Journal article<br />Journal articles
Language:
English
ISSN:
2571-905X
Relation:
https://hal.science/hal-04635973v1; info:eu-repo/semantics/altIdentifier/doi/10.3390/stats7030042
DOI:
10.3390/stats7030042
Rights:
info:eu-repo/semantics/OpenAccess
URL: http://creativecommons.org/licenses/by/
Accession Number:
edshal.hal.05076529v1
Database:
HAL

Further Information

Computing cross-partial derivatives using fewer model runs is relevant in modeling, such as stochastic approximation, derivative-based ANOVA, exploring complex models, and active subspaces. This paper introduces surrogates of all the cross-partial derivatives of functions by evaluating such functions at N randomized points and using a set of L constraints. Randomized points rely on independent, central, and symmetric variables. The associated estimators, based on NL model runs, reach the optimal rates of convergence (i.e., O(N−1)), and the biases of our approximations do not suffer from the curse of dimensionality for a wide class of functions. Such results are used for (i) computing the main and upper bounds of sensitivity indices, and (ii) deriving emulators of simulators or surrogates of functions thanks to the derivative-based ANOVA. Simulations are presented to show the accuracy of our emulators and estimators of sensitivity indices. The plug-in estimates of indices using the U-statistics of one sample are numerically much stable.