Treffer: Enhancing Structural Reliability Analysis with Machine Learning-Based Surrogate Models: Theoretical and Experimental Insights

Title:
Enhancing Structural Reliability Analysis with Machine Learning-Based Surrogate Models: Theoretical and Experimental Insights
Contributors:
Laboratoire d'InfoRmatique en Image et Systèmes d'information (LIRIS), Université Lumière - Lyon 2 (UL2)-École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Tribologie et Dynamique des Systèmes (LTDS), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-École Nationale des Travaux Publics de l'État (ENTPE)-Ecole Nationale d'Ingénieurs de Saint Etienne (ENISE)-Centre National de la Recherche Scientifique (CNRS), Institut Camille Jordan (ICJ), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Modélisation mathématique, calcul scientifique (MMCS), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL)
Publisher Information:
CCSD, 2025.
Publication Year:
2025
Collection:
collection:UNIV-ST-ETIENNE
collection:CNRS
collection:ICJ
collection:UNIV-LYON1
collection:UNIV-LYON2
collection:INSA-LYON
collection:EC-LYON
collection:ENTPE
collection:LTDS
collection:INSMI
collection:LIRIS
collection:LYON2
collection:INSA-GROUPE
collection:UDL
collection:ENISE
collection:UNIV-LYON
collection:EC_LYON_STRICT
collection:ENISE_ECL
collection:HAL-LYON-2-NOUVELLE-VERSION
Original Identifier:
HAL: hal-05146445
Document Type:
E-Ressource preprint<br />Preprints<br />Working Papers
Language:
English
Rights:
info:eu-repo/semantics/OpenAccess
Accession Number:
edshal.hal.05146445v1
Database:
HAL

Weitere Informationen

This paper presents a comprehensive framework for structural dynamics and reliability analysis by integrating theoretical modeling of continuous systems and experimental investigations of multi-storey steel frames. First, a beamlike structure with infinite degrees of freedom is analyzed using the Rayleigh-Ritz method, highlighting the importance of partial di!erential equations in capturing distributed mass, sti!ness, and damping. Tuned Mass Dampers (TMDs) are incorporated to mitigate resonant vibrations, and advanced sampling techniques (Latin Hypercube Sampling, Monte Carlo simulation) are employed to quantify structural reliability under uncertain loading conditions. Machine learning models, including Random Forest and Neural Networks, are then developed as surrogate models to predict failure probabilities, revealing critical nonlinear relationships between system parameters. To validate and extend these insights, the framework is applied to a twostorey steel frame tested under controlled laboratory conditions. A mechanical shaker supplies dynamic excitations with varying statistical characteristics-kurtosis, root mean square (RMS), skewness, and crest factor-while force and acceleration measurements capture the structure's real-time responses. By training machine learning algorithms (Random Forest, Gradient Boosting, XGBoost, and Neural Networks) on time-domain features, the study demonstrates the capability of data-driven methods to capture complex vibratory behaviors beyond what standard mechanical models predict.