Treffer: Evolution of Inherently Interpretable Visual Control Policies

Title:
Evolution of Inherently Interpretable Visual Control Policies
Contributors:
Université Toulouse Capitole (UT Capitole), Communauté d'universités et établissements de Toulouse (Comue de Toulouse), Institut de recherche en informatique de Toulouse (IRIT), Communauté d'universités et établissements de Toulouse (Comue de Toulouse)-Communauté d'universités et établissements de Toulouse (Comue de Toulouse)-Université Toulouse - Jean Jaurès (UT2J), Communauté d'universités et établissements de Toulouse (Comue de Toulouse)-Communauté d'universités et établissements de Toulouse (Comue de Toulouse)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Communauté d'universités et établissements de Toulouse (Comue de Toulouse)-Université de Toulouse (EPE UT), Communauté d'universités et établissements de Toulouse (Comue de Toulouse)-Toulouse Mind & Brain Institut (TMBI), Université Toulouse - Jean Jaurès (UT2J), Communauté d'universités et établissements de Toulouse (Comue de Toulouse)-Communauté d'universités et établissements de Toulouse (Comue de Toulouse)-Université de Toulouse (EPE UT), Università degli studi di Trieste = University of Trieste, Real Expression Artificial Life (IRIT-REVA), Communauté d'universités et établissements de Toulouse (Comue de Toulouse)-Université Toulouse Capitole (UT Capitole), Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO), Institut universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.)
Source:
GECCO '25: Genetic and Evolutionary Computation Conference. :358-367
Publisher Information:
CCSD; ACM, 2025.
Publication Year:
2025
Collection:
collection:UNIV-TLSE2
collection:CNRS
collection:UT1-CAPITOLE
collection:IRIT
collection:IRIT-REVA
collection:TOULOUSE-INP
collection:UNIV-UT3
collection:UT3-INP
collection:UT3-TOULOUSEINP
collection:ISAE-SUPAERO
Subject Geographic:
Original Identifier:
HAL: hal-05178539
Document Type:
Konferenz conferenceObject<br />Conference papers
Language:
English
Relation:
info:eu-repo/semantics/altIdentifier/doi/10.1145/3712256.3726332
DOI:
10.1145/3712256.3726332
Rights:
info:eu-repo/semantics/OpenAccess
Accession Number:
edshal.hal.05178539v1
Database:
HAL

Weitere Informationen

Vision-based decision-making tasks encompass a wide range of applications, including safety-critical domains where trustworthiness is as key as performance. These tasks are often addressed using Deep Reinforcement Learning (DRL) techniques, based on Artificial Neural Networks (ANNs), to automate sequential decision making. However, the "black-box" nature of ANNs limits their applicability in these settings, where transparency and accountability are essential. To address this, various explanation methods have been proposed; however, they often fall short in fully elucidating the decision-making pipeline of ANNs, a critical aspect for ensuring reliability in safety-critical applications. To bridge this gap, we propose an approach based on Graph-based Genetic Programming (GGP) to generate transparent policies for vision-based control tasks. Our evolved policies are constrained in size and composed of simple and well-understood operational modules, enabling inherent interpretability. We evaluate our method on three Atari games, comparing explanations derived from common explainability techniques to those derived from interpreting the agent's true computational graph. We demonstrate that interpretable policies offer a more complete view of the decision process than explainability methods, enabling a full comprehension of competitive game-playing policies.