Treffer: Post-processing of fiber optic sensors data with consideration of strain transfer for distributed strain measurements

Title:
Post-processing of fiber optic sensors data with consideration of strain transfer for distributed strain measurements
Contributors:
Structure et Instrumentation Intégrée (COSYS-SII), Université Gustave Eiffel, Statistical Inference for Structural Health Monitoring (I4S), Centre Inria de l'Université de Rennes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Structure et Instrumentation Intégrée (COSYS-SII), Université Gustave Eiffel-Université Gustave Eiffel, Département Composants et Systèmes (COSYS), Institut National de Recherche en Informatique et en Automatique [Inria]
Source:
IOMAC 2025 - 11th International Operational Modal Analysis Conference. :1-8
Publisher Information:
CCSD, 2025.
Publication Year:
2025
Collection:
collection:INRIA
collection:INRIA-RENNES
collection:INRIA_TEST
collection:TESTALAIN1
collection:IFSTTAR
collection:INRIA2
collection:INRIA-RENGRE
collection:UNIV-EIFFEL
collection:U-EIFFEL
collection:COSYS
collection:IOMAC2025
Subject Geographic:
Original Identifier:
HAL: hal-05232747
Document Type:
Konferenz conferenceObject<br />Conference papers
Language:
English
Rights:
info:eu-repo/semantics/OpenAccess
URL: http://creativecommons.org/licenses/by/
Accession Number:
edshal.hal.05232747v1
Database:
HAL

Weitere Informationen

In recent years, fiber optic sensors are widely used in structural health monitoring due to their highspatialresolution distributed measurements. However, strain transfer through protective coatings of thesensors can distort measurements, especially in high strain gradients. To correct this, mathematical modelsof strain transfer have been developed and validated through numerical simulations and experiments.Recovering the actual strain profile involves inverting these models, particularly a 1D second-order differentialequation derived from a 3D model. This equation, subject to boundary conditions, must besolved repeatedly for efficient numerical inversion. Given the high sampling frequencies of fiber opticsensors, fast algorithms are crucial for real-time applications such as vibration analysis. This paper proposesan efficient method to solve the 1D strain transfer equation and its inverse problem. By enablingrapid post-processing of strain measurements, this approach aims to enhance the application of fiber opticsensors in vibration analysis and structural health monitoring.