Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Bio-Inspired, Situated and Cellular Unconventional Information Technologies (BISCUIT), Department of Complex Systems, Artificial Intelligence & Robotics (LORIA - AIS), Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), CentraleSupélec, Sondra, CentraleSupélec, Université Paris-Saclay (SONDRA), ONERA-CentraleSupélec-Université Paris-Saclay, DEMR, ONERA, Université Paris Saclay [Palaiseau], ONERA-Université Paris-Saclay
Source:
International Joint Conference on Neural Networks. :1-9
Complex-valued neural networks (CVNN) have attracted increasing attention in recent years, although their definition dates back to the mid-20th century. Indeed, several domains naturally process complex-valued signals, such as when sensing involves the response to an electromagnetic wave, such as remote sensing, MRI, etc. These domains would benefit from breakthroughs in complex-valued neural networks (CVNNs). We believe independent contributions to CVNNs must be gathered in a single, easy-to-use library. \texttt{torchcvnn} is an effort in that direction and provides several complex-valued building blocks, allowing us to experiment with CVNNs easily. The library is available at \url{https://github.com/torchcvnn/torchcvnn} alongside examples available at \url{https://github.com/torchcvnn/examples}.