Laboratoire d'Informatique et des Systèmes (LIS) (Marseille, Toulon) (LIS), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), École des Mines de Saint-Étienne (Mines Saint-Étienne MSE), Institut Mines-Télécom [Paris] (IMT), Laboratoire d'Informatique, de Modélisation et d'Optimisation des Systèmes (LIMOS), Ecole Nationale Supérieure des Mines de St Etienne (ENSM ST-ETIENNE)-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne (UCA)-Institut national polytechnique Clermont Auvergne (INP Clermont Auvergne), Université Clermont Auvergne (UCA)-Université Clermont Auvergne (UCA), Institut Henri Fayol (FAYOL-ENSMSE), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Département Génie mathématique et industriel (FAYOL-ENSMSE), Ecole Nationale Supérieure des Mines de St Etienne (ENSM ST-ETIENNE)-Institut Henri Fayol, Département Automatique, Productique et Informatique (IMT Atlantique - DAPI), IMT Atlantique (IMT Atlantique), Modélisation, Optimisation et DEcision pour la Logistique, l'Industrie et les Services (LS2N - équipe MODELIS), Laboratoire des Sciences du Numérique de Nantes (LS2N), Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-NANTES UNIVERSITÉ - École Centrale de Nantes (Nantes Univ - ECN), Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes université - UFR des Sciences et des Techniques (Nantes univ - UFR ST), Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique), Nantes Université (Nantes Univ), ANR-21-CE10-0019,RECONFIDURABLE,Conception et pilotage de systèmes de production reconfigurables et durables(2021)
The emergence of reconfigurable manufacturing offers innovative solutions for efficientlyadapting to changing market demands and system modifications. This paper introduces a robustpossibilistic programming framework to address a multi-objective production scheduling problemwithin sustainable reconfigurable manufacturing systems, incorporating uncertainty. The model capturesthe workforce learning effect on reconfiguration times, aiming to minimize makespan, productioncosts, and social sustainability while considering uncertain parameters. Possibilistic chance-constrainedprogramming and robust possibilistic programming approaches are applied to assess both model andsolution robustness. Additionally, the framework addresses workplace safety risks linked to workforceassignments and incorporates workforce entry preferences for flexible hours. By considering the learningeffect in reconfiguration times, the model reflects the dynamic nature of scheduling, aligning moreclosely with real-world scenarios. The augmented epsilon-constraint method is also used to efficientlyfind Pareto-optimal solutions for the multi-objective model.