Treffer: The Davenport constant of balls and boxes

Title:
The Davenport constant of balls and boxes
Contributors:
Institut de Mathématiques de Jussieu - Paris Rive Gauche (IMJ-PRG (UMR_7586)), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Centre de Mathématiques Laurent Schwartz (CMLS), École polytechnique (X), Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-Centre National de la Recherche Scientifique (CNRS)
Publisher Information:
CCSD, 2025.
Publication Year:
2025
Collection:
collection:X
collection:CMLS
collection:CNRS
collection:INSMI
collection:X-DEP-MATH
collection:IMJ
collection:SORBONNE-UNIVERSITE
collection:SORBONNE-UNIV
collection:SU-SCIENCES
collection:IP_PARIS
collection:UNIV-PARIS
collection:UNIVERSITE-PARIS
collection:UP-SCIENCES
collection:SU-TI
collection:ALLIANCE-SU
collection:SUPRA_MATHS_INFO
collection:IP-PARIS-MATHEMATIQUES
Original Identifier:
HAL: hal-05328809
Document Type:
E-Ressource preprint<br />Preprints<br />Working Papers
Language:
English
Rights:
info:eu-repo/semantics/OpenAccess
Accession Number:
edshal.hal.05328809v1
Database:
HAL

Weitere Informationen

43 pages, 4 figures
Given an additively written abelian group $G$ and a set $X\subseteq G$, we let $\mathsf{D}(X)$ denote the Davenport constant of $X$, namely the largest non-negative integer $n$ for which there exists a sequence $x_1, \dots, x_n$ of elements of $X$ such that $\sum_{i=1}^n x_i =0$ and $\sum_{i \in I} x_i \ne 0$ for each non-empty proper subset $I$ of $\{1, \ldots, n\}$. In this paper, we mainly investigate the case when $G$ is $\mathbb{Z}^2$ and $\mathbb{Z}^3$, and $X$ is a discrete Euclidean ball. An application to the classical problem of estimating the Davenport constant of a box - a product of intervals of integers - is then obtained.