Serviceeinschränkungen vom 12.-22.02.2026 - weitere Infos auf der UB-Homepage

Treffer: Enabling HPC Scientific Workflows for Serverless

Title:
Enabling HPC Scientific Workflows for Serverless
Contributors:
Self-adaptation for distributed services and large software systems (SPIRALS), Centre Inria de l'Université de Lille, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)
Source:
SC24-W: Workshops of the International Conference for High Performance Computing. :110-125
Publisher Information:
CCSD; IEEE, 2024.
Publication Year:
2024
Collection:
collection:CNRS
collection:INRIA
collection:INRIA-LILLE
collection:INRIA_TEST
collection:TESTALAIN1
collection:CRISTAL
collection:INRIA2
collection:CRISTAL-SPIRALS
collection:UNIV-LILLE
Subject Geographic:
Original Identifier:
HAL: hal-05375341
Document Type:
Konferenz conferenceObject<br />Conference papers
Language:
English
Relation:
info:eu-repo/semantics/altIdentifier/doi/10.1109/SCW63240.2024.00022
DOI:
10.1109/SCW63240.2024.00022
Rights:
info:eu-repo/semantics/OpenAccess
URL: http://creativecommons.org/licenses/by/
Accession Number:
edshal.hal.05375341v1
Database:
HAL

Weitere Informationen

The convergence of edge computing, big data analytics, and AI with traditional scientific calculations is increasingly being adopted in HPC workflows. Workflow management systems are crucial for managing and orchestrating these complex computational tasks. However, it is difficult to identify patterns within the growing population of HPC workflows. Serverless has emerged as a novel computing paradigm, offering dynamic resource allocation, quick response time, fine-grained resource management and auto-scaling. In this paper, we propose a framework to enable HPC scientific workflows on serverless. Our approach integrates a widely used traditional HPC workflow generator with an HPC serverless workflow management system to create benchmark suites of scientific workflows with diverse characteristics. These workflows can be executed on different serverless platforms. We comprehensively compare executing workflows on traditional local containers and serverless computing platforms. Our results show that serverless can reduce CPU and memory usage respectively by 78.11% and 73.92% without compromising performance.