Treffer: Methodological insights on building and evaluating models for early warning of hypotension during surgery

Title:
Methodological insights on building and evaluating models for early warning of hypotension during surgery
Contributors:
Laboratoire d'Automatique, de Mécanique et d'Informatique industrielles et Humaines - UMR 8201 (LAMIH), Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-INSA Institut National des Sciences Appliquées Hauts-de-France (INSA Hauts-De-France), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA), GIPSA - Modelling and Optimal Decision for Uncertain Systems (GIPSA-MODUS), GIPSA Pôle Automatique et Diagnostic (GIPSA-PAD), Grenoble Images Parole Signal Automatique (GIPSA-lab), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP), Université Grenoble Alpes (UGA)-Grenoble Images Parole Signal Automatique (GIPSA-lab), Université Grenoble Alpes (UGA), Centre National de la Recherche Scientifique (CNRS), Université Grenoble Alpes - UFR Médecine (UGA UFRM), ANR-24-CE45-4255,Clinical,Classification de séries temporelles pour la détection et la prédiction d'évènements critiques liés à l'anesthésie(2024)
Publisher Information:
CCSD, 2025.
Publication Year:
2025
Collection:
collection:UGA
collection:CNRS
collection:UNIV-VALENCIENNES
collection:INPG
collection:GIPSA
collection:INSA-GROUPE
collection:GIPSA-PAD
collection:GIPSA-MODUS
collection:UGA-EPE
collection:ANR
collection:LAMIH
collection:INSA-HAUTS-DE-FRANCE
collection:TEST-UGA
Original Identifier:
HAL: hal-05419169
Document Type:
E-Ressource preprint<br />Preprints<br />Working Papers
Language:
English
Rights:
info:eu-repo/semantics/OpenAccess
URL: http://creativecommons.org/licenses/by/
Accession Number:
edshal.hal.05419169v1
Database:
HAL

Weitere Informationen

Submitted to Anesthesiology. Copyright may be transferred without notice.
Submitted to Anesthesiology. Copyright may be transferred without notice. Background: Early warning of hypotension could help prevent severe complications during surgery. Several data-driven models have been proposed, but framing, data selection, and evaluation metrics differ widely in the literature. Methods: Using datasets from non-cardiac and cardiac surgery, we assess how data selection affects model performance. We compare models trained and tested with or without segments containing ongoing hypotension at prediction time or medical interventions, and evaluate both standard metrics and an operational metric proposed in recent studies. Results: Across both datasets, data selection strongly influenced performance under a sliding window framing, particularly during testing, where model rankings changed with the selection strategy. Excluding interventions and ongoing hypotension better reflected the intended clinical use-case. The operational metric highlighted differences more clearly than ROC or precision-recall curves. In training, removing intervention on training data improve performances while exclusion of ongoing hypotension do not change the performances. Conclusion: Data selection is critical when building and evaluating hypotension prediction models. We recommend training models on datasets excluding interventions, testing on datasets excluding interventions and ongoing hypotension, and evaluating with operational metrics and calibration curves.