Result: Learning Rules from Multisource Data for Cardiac Monitoring

Title:
Learning Rules from Multisource Data for Cardiac Monitoring
Contributors:
Diagnosing, Recommending Actions and Modelling (DREAM), Centre Inria de l'Université de Rennes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-GESTION DES DONNÉES ET DE LA CONNAISSANCE (IRISA-D7), Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-Télécom Bretagne-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-Télécom Bretagne-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Télécom Bretagne-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS), Silvia Miksch, Jim Hunter, Elpida Kervanou
Source:
Artificial Intelligence in Medicine. :484-493
Publisher Information:
CCSD; Springer, 2005.
Publication Year:
2005
Collection:
collection:EC-PARIS
collection:UNIV-RENNES1
collection:CNRS
collection:INRIA
collection:UNIV-UBS
collection:INSA-RENNES
collection:INRIA-RENNES
collection:IRISA
collection:IRISA_SET
collection:INRIA_TEST
collection:TESTALAIN1
collection:IRISA-D7
collection:INRIA2
collection:UR1-HAL
collection:UR1-MATH-STIC
collection:UR1-UFR-ISTIC
collection:TEST-UNIV-RENNES
collection:TEST-UR-CSS
collection:UNIV-RENNES
collection:INRIA-RENGRE
collection:INRIA-300009
collection:INSTITUTS-TELECOM
collection:UR1-MATH-NUM
Original Identifier:
HAL:
Document Type:
Conference conferenceObject<br />Conference papers
Language:
English
Rights:
info:eu-repo/semantics/OpenAccess
Accession Number:
edshal.inria.00000184v1
Database:
HAL

Further Information

This paper aims at formalizing the concept of learning rules from multisource data in a cardiac monitoring context. Our method has been implemented and evaluated on learning from data describing cardiac behaviors from different viewpoints, here electrocardiograms and arterial blood pressure measures. In order to cope with the dimensionality problems of multisource learning, we propose an Inductive Logic Programming method using a two-step strategy. Firstly, rules are learned independently from each sources. Secondly, the learned rules are used to bias a new learning process from the aggregated data. The results show that the the proposed method is much more efficient than learning directly from the aggregated data. Furthermore, it yields rules having better or equal accuracy than rules obtained by monosource learning