Treffer: Computing the Probability Vectors for Random Walks on Graphs with Bounded Arboricity

Title:
Computing the Probability Vectors for Random Walks on Graphs with Bounded Arboricity
Authors:
Contributors:
Algorithms for the Grid (ALGORILLE), INRIA Lorraine, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS), Indian Institute of Technology Delhi (IIT Delhi), IIT / INRIA intership programme Région Lorraine within the team AlGorille
Source:
[Internship report] 2005
Publisher Information:
CCSD, 2005.
Publication Year:
2005
Collection:
collection:CNRS
collection:INRIA
collection:INPL
collection:INRIA-LORRAINE
collection:LORIA2
collection:INRIA-NANCY-GRAND-EST
collection:TESTALAIN1
collection:UNIV-LORRAINE
collection:INRIA2
collection:TDS-MACS
collection:LORIA
collection:LARA
collection:INRIA-INDE
collection:AM2I-UL
Original Identifier:
HAL:
Document Type:
Report report<br />Reports
Language:
English
Rights:
info:eu-repo/semantics/OpenAccess
Accession Number:
edshal.inria.00000578v1
Database:
HAL

Weitere Informationen

The problem of detecting dense subgraphs (\emph{communities}) in large sparse graphs is inherent to many real world domains like social networking. A popular approach of detecting these communities involves first computing the \emph{probability~vectors} for \emph{random~walks} on the graph for a fixed number of steps, and then using these probability vectors to detect the communities. Such an approach has been discussed by Latapy and Pons in \cite{latapypons}. They compute the probability vectors using simple matrix multiplication and define a measure of the structural similarity between vertices which they call \emph{distance}. Based on the probability vectors, they compute the distances between vertices and then based on these distances group the vertices into communities. Their algorithm takes $O(n^2\log n)$ time where $n$ is the number of vertices in the graph. We focus on the first part of the approach i.e. computation of the probability vectors for the random walks, and propose a more efficient algorithm (than matrix multiplication) for computing these vectors in time complexity that is linear in the size of the output.