Treffer: The complexity of class polynomial computation via floating point approximations

Title:
The complexity of class polynomial computation via floating point approximations
Authors:
Contributors:
Algorithmic number theory for cryptology (TANC), Laboratoire d'informatique de l'École polytechnique [Palaiseau] (LIX), École polytechnique (X), Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X), Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-Centre National de la Recherche Scientifique (CNRS)-Centre Inria de Saclay, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-Centre National de la Recherche Scientifique (CNRS), Lithe and fast algorithmic number theory (LFANT), Institut de Mathématiques de Bordeaux (IMB), Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Centre Inria de l'Université de Bordeaux, Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)
Source:
Mathematics of Computation. 78(266):1089-1107
Publisher Information:
CCSD; American Mathematical Society, 2009.
Publication Year:
2009
Collection:
collection:X
collection:CNRS
collection:INRIA
collection:IMB
collection:LIX
collection:INRIA-BORDEAUX
collection:INRIA-SACLAY
collection:X-LIX
collection:X-DEP
collection:X-DEP-INFO
collection:INRIA_TEST
collection:TESTALAIN1
collection:INRIA2
collection:UNIVERSITE-BORDEAUX
Original Identifier:
ARXIV: cs/0601104
HAL:
Document Type:
Zeitschrift article<br />Journal articles
Language:
English
ISSN:
0025-5718
1088-6842
Relation:
info:eu-repo/semantics/altIdentifier/arxiv/cs/0601104
Rights:
info:eu-repo/semantics/OpenAccess
Accession Number:
edshal.inria.00001040v3
Database:
HAL

Weitere Informationen

To appear in Mathematics of Computation.
We analyse the complexity of computing class polynomials, that are an important ingredient for CM constructions of elliptic curves, via complex floating point approximations of their roots. The heart of the algorithm is the evaluation of modular functions in several arguments. The fastest one of the presented approaches uses a technique devised by Dupont to evaluate modular functions by Newton iterations on an expression involving the arithmetic-geometric mean. It runs in time $O (|D| \log^5 |D| \log \log |D|) = O (|D|^{1 + \epsilon}) = O ( h^{2 + \epsilon})$ for any $\epsilon > 0$, where $D$ is the CM discriminant and $h$ is the degree of the class polynomial. Another fast algorithm uses multipoint evaluation techniques known from symbolic computation; its asymptotic complexity is worse by a factor of $\log |D|$. Up to logarithmic factors, this running time matches the size of the constructed polynomials. The estimate also relies on a new result concerning the complexity of enumerating the class group of an imaginary-quadratic order and on a rigorously proven upper bound for the height of class polynomials.