Result: Detection of Constrictions on Closed Polyhedral Surfaces

Title:
Detection of Constrictions on Closed Polyhedral Surfaces
Contributors:
Virtual environments for animation and image synthesis of natural objects (EVASION), Laboratoire d'informatique GRAphique, VIsion et Robotique de Grenoble (GRAVIR - IMAG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Centre Inria de l'Université Grenoble Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS), Laboratoire des images et des signaux (LIS), Université Joseph Fourier - Grenoble 1 (UJF)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS), G.-P. Bonneau, S. Hahmann, C. Hansen, G.-P. Bonneau, S. Hahmann, C. Hansen
Source:
Eurographics/IEEE TCVG Visualisation Symposium. :67-74
Publisher Information:
CCSD; The Eurographics Association, 2003.
Publication Year:
2003
Collection:
collection:UGA
collection:IMAG
collection:CNRS
collection:INRIA
collection:UNIV-GRENOBLE1
collection:INPG
collection:INRIA-RHA
collection:LIS
collection:INRIA_TEST
collection:TESTALAIN1
collection:INRIA2
collection:INRIA-RENGRE
collection:TEST-UGA
Subject Geographic:
Original Identifier:
HAL:
Document Type:
Conference conferenceObject<br />Conference papers
Language:
English
Rights:
info:eu-repo/semantics/OpenAccess
Accession Number:
edshal.inria.00001144v1
Database:
HAL

Further Information

We define constrictions on a surface as simple closed geodesic curves, i.e. curves whose length is locally minimal. They can be of great interests in order to cut the surface in smaller parts. In this paper, we present a method to detect constrictions on closed triangulated surfaces. Our algorithm is based on a progressive approach. First, the surface is simplified by repeated edge collapses. The simplification continues until we detect an edge whose collapse would change the topology of the surface. It happens when three edges of the surface form a triangle that does not belong to the surface. The three edges define what we call a seed curve and are used to initialize the search of a constriction. Secondly, the constriction is progressively constructed by incrementally refining the simplified surface until the initial surface is retrieved. At each step of this refinement process, the constriction is updated. Some experimental results are provided.