Result: External Memory Algorithms using a Coarse Grained Paradigm

Title:
External Memory Algorithms using a Coarse Grained Paradigm
Authors:
Contributors:
Algorithms for the Grid (ALGORILLE), INRIA Lorraine, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS), INRIA
Source:
[Research Report] RR-5142, INRIA. 2004
Publisher Information:
CCSD, 2004.
Publication Year:
2004
Collection:
collection:CNRS
collection:INRIA
collection:INPL
collection:INRIA-RRRT
collection:INRIA-LORRAINE
collection:LORIA2
collection:INRIA-NANCY-GRAND-EST
collection:TESTALAIN1
collection:UNIV-LORRAINE
collection:INRIA2
collection:LORIA
collection:LARA
collection:AM2I-UL
Original Identifier:
HAL:
Document Type:
Report report<br />Reports
Language:
English
Rights:
info:eu-repo/semantics/OpenAccess
Accession Number:
edshal.inria.00071441v1
Database:
HAL

Further Information

We present a simple framework that allows for the use of algorithms in external memory settings that originally were designed for coarse grained parallel architectures. This framework is an extension of the model PRO as described by Gebremedhin et al. (2002). Compared to the commonly used IO model it is trading a slight (but practically not important) restriction on the internal versus external memory size for an independence of the latency of the underlying hardware. Thereby the performance of an algorithm that is described in this model will be bound to only two parameters, namely computing time and bandwidth requirements. To prove the usefulness of this setting we also describe an extension to SSCRAP, our C++ environment for the development of algorithms on coarse grained architectures, that allows for easy execution of programs in an external memory setting. Our environment is well suited for regular as well as irregular problems and scales from low end PCs to high end clusters and mainframe technology. It allows running algorithms designed on a high level of abstraction in one of the known coarse grained parallel models without modification in an external memory setting. The first tests presented here in this paper show a very efficient behavior in the context of out-of-core computation (mapping memory to disk files).