Result: Near-Optimal Parameterization of the Intersection of Quadrics: I. The Generic Algorithm

Title:
Near-Optimal Parameterization of the Intersection of Quadrics: I. The Generic Algorithm
Contributors:
Effective Geometric Algorithms for Surfaces and Visibility (VEGAS), INRIA Lorraine, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS), Solvers for Algebraic Systems and Applications (SALSA), Laboratoire d'Informatique de Paris 6 (LIP6), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Inria Paris-Rocquencourt, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Source:
Journal of Symbolic Computation. 43(3):168-191
Publisher Information:
CCSD; Elsevier, 2008.
Publication Year:
2008
Collection:
collection:UPMC
collection:CNRS
collection:INRIA
collection:INPL
collection:INRIA-ROCQ
collection:INRIA_TEST
collection:INRIA-LORRAINE
collection:LORIA2
collection:INRIA-NANCY-GRAND-EST
collection:TESTALAIN1
collection:LIP6
collection:UNIV-LORRAINE
collection:INRIA2
collection:LORIA
collection:UPMC_POLE_1
collection:SORBONNE-UNIVERSITE
collection:SU-SCIENCES
collection:SU-TI
collection:ALLIANCE-SU
collection:AM2I-UL
Original Identifier:
HAL:
Document Type:
Journal article<br />Journal articles
Language:
English
ISSN:
0747-7171
1095-855X
Relation:
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jsc.2007.10.006
DOI:
10.1016/j.jsc.2007.10.006
Rights:
info:eu-repo/semantics/OpenAccess
Accession Number:
edshal.inria.00186089v1
Database:
HAL

Further Information

We present an exact and efficient algorithm for computing a proper parametric representation of the intersection of two quadrics in three-dimensional real space given by implicit equations with rational coefficients. The output functions parameterizing the intersection in projective space are polynomial, whenever it is possible, which is the case when the intersection is not a smooth quartic (for example, a singular quartic, a cubic and a line, and two conics). Furthermore, the parameterization is near-optimal in the sense that the number of distinct square roots appearing in the coefficients of these functions is minimal, except in a small number of well-identified cases where there may be an extra square root. In addition, the algorithm is practical: a complete and efficient C++ implementation is described in Lazard et al. (2006). In Part I, we present an algorithm for computing a parameterization of the intersection of two arbitrary quadrics which we prove to be near-optimal in the generic, smooth quartic, case. Parts~II and~III treat the singular cases. We present in Part~II the first classification of pencils of quadrics according to the real type of the intersection and we show how this classification can be used to efficiently determine the type of the real part of the intersection of two arbitrary quadrics. This classification is at the core of the design of our algorithms for computing near-optimal parameterizations of the real part of the intersection in all singular cases. We present these algorithms in Part~III and give examples covering all the possible situations in terms of both the real type of intersection and the number and depth of square roots appearing in the coefficients.