Treffer: Generalized Attachment Models for the Genesis of Graphs with High Clustering Coefficient

Title:
Generalized Attachment Models for the Genesis of Graphs with High Clustering Coefficient
Authors:
Contributors:
Algorithms for the Grid (ALGORILLE), INRIA Lorraine, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS), Santo Fortunato and Giuseppe Mangioni and Ronaldo Menezes and Vincenzo Nicosia, Grid'5000
Source:
Santo Fortunato and Giuseppe Mangioni and Ronaldo Menezes and Vincenzo Nicosia. Complex Networks - Results of the 2009 International Workshop on Complex Networks (CompleNet 2009). :99-113
Publisher Information:
CCSD; Springer Berlin / Heidelberg, 2009.
Publication Year:
2009
Collection:
collection:CNRS
collection:INRIA
collection:INPL
collection:INRIA-LORRAINE
collection:LORIA2
collection:INRIA-NANCY-GRAND-EST
collection:GRID5000
collection:TESTALAIN1
collection:UNIV-LORRAINE
collection:INRIA2
collection:TDS-MACS
collection:LORIA
collection:SLICES-FR
collection:AM2I-UL
Original Identifier:
HAL:
Document Type:
Buch bookPart<br />Book sections
Language:
English
ISBN:
978-3-642-01205-1
Relation:
info:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-642-01206-8_9
DOI:
10.1007/978-3-642-01206-8_9
Rights:
info:eu-repo/semantics/OpenAccess
Accession Number:
edshal.inria.00312059v2
Database:
HAL

Weitere Informationen

Commonly used techniques for the random generation of graphs such as those of Erdős & Rényi and Barabási & Albert have two disadvantages, namely their lack of bias with respect to history of the evolution of the graph, and their incapability to produce families of graphs with non-vanishing prescribed clustering coefficient. In this work we propose a model for the genesis of graphs that tackles these two issues. When translated into random generation procedures it generalizes the above mentioned procedures.When just seen as composition schemes for graphs they generalize the perfect elimination schemes of chordal graphs. The model iteratively adds so-called contexts that introduce an explicit dependency to the previous evolution of the graph. Thereby they reflect a historical bias during this evolution that goes beyond the simple degree constraint of preference edge attachment. Fixing certain simple statical quantities during the genesis leads to families of random graphs with a clustering coefficient that can be bounded away from zero.