Treffer: N-Symmetry Direction Field Design

Title:
N-Symmetry Direction Field Design
Contributors:
Geometry and Lighting (ALICE), INRIA Lorraine, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)
Source:
ACM Transactions on Graphics. 27(2)
Publisher Information:
CCSD; Association for Computing Machinery, 2008.
Publication Year:
2008
Collection:
collection:CNRS
collection:INRIA
collection:INPL
collection:INRIA-LORRAINE
collection:LORIA2
collection:INRIA-NANCY-GRAND-EST
collection:TESTALAIN1
collection:UNIV-LORRAINE
collection:INRIA2
collection:LORIA
collection:INRIA-300009
collection:AM2I-UL
Original Identifier:
HAL:
Document Type:
Zeitschrift article<br />Journal articles
Language:
English
ISSN:
0730-0301
1557-7368
Relation:
info:eu-repo/semantics/altIdentifier/doi/10.1145/1356682.1356683
DOI:
10.1145/1356682.1356683
Rights:
info:eu-repo/semantics/OpenAccess
Accession Number:
edshal.inria.00331900v1
Database:
HAL

Weitere Informationen

Many algorithms in computer graphics and geometry processing use two orthogonal smooth direction fields (unit tangent vector fields) defined over a surface. For instance, these direction fields are used in texture synthesis, in geometry processing or in non-photorealistic rendering to distribute and orient elements on the surface. Such direction fields can be designed in fundamentally different ways, according to the symmetry requested: inverting a direction or swapping two directions may be allowed or not. Despite the advances realized in the last few years in the domain of geometry processing, a unified formalism is still lacking for the mathematical object that characterizes these generalized direction fields. As a consequence, existing direction field design algorithms are limited to use non-optimum local relaxation procedures. In this paper, we formalize N-symmetry direction fields, a generalization of classical direction fields. We give a new definition of their singularities to explain how they relate with the topology of the surface. Namely, we provide an accessible demonstration of the Poincare-Hopf theorem in the case of N-symmetry direction fields on 2-manifolds. Based on this theorem, we explain how to control the topology of N-symmetry direction fields on meshes. We demonstrate the validity and robustness of this formalism by deriving a highly efficient algorithm to design a smooth field interpolating user defined singularities and directions.