Theoretical adverse computations, and safety (CARTE), Centre Inria de l'Université de Lorraine, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Department of Formal Methods (LORIA - FM), Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-CentraleSupélec-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Universidad Polytechnica
Source:
Proceedings of the 10th international ACM SIGPLAN conference on Principles and Practice of Declarative Programming - PPDP 2008. :79-88
In this paper, we study characterizations of polynomial complexity classes using first order functional programs and we try to improve their intensionality, that is the number of natural algorithms captured. We use polynomial assignments over the reals. The polynomial assignments used are inspired by the notions of quasi-interpretation and sup-interpretation, and are decidable when considering polynomials of bounded degree ranging over real numbers. Contrarily to quasi-interpretations, the considered assignments are not required to have the subterm property. Consequently, they capture a strictly larger number of natural algorithms (including quotient, gcd, duplicate elimination from a list) than previous characterizations using quasi-interpretations.