Treffer: Formal verification of exact computations using Newton's method

Title:
Formal verification of exact computations using Newton's method
Contributors:
Mathematical, Reasoning and Software (MARELLE), Centre Inria d'Université Côte d'Azur, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Source:
Theorem Proving in Higher Order Logics. :408-423
Publisher Information:
CCSD; Springer, 2009.
Publication Year:
2009
Collection:
collection:INRIA
collection:INRIA-SOPHIA
collection:INRIASO
collection:INRIA_TEST
collection:TESTALAIN1
collection:INRIA2
collection:UNIV-COTEDAZUR
Subject Geographic:
Original Identifier:
HAL:
Document Type:
Konferenz conferenceObject<br />Conference papers
Language:
English
Relation:
info:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-642-03359-9_28
DOI:
10.1007/978-3-642-03359-9_28
Rights:
info:eu-repo/semantics/OpenAccess
Accession Number:
edshal.inria.00369511v1
Database:
HAL

Weitere Informationen

We are interested in the certification of Newton's method. We use a formalization of the convergence and stability of the method done with the axiomatic real numbers of Coq's Standard Library in order to validate the computation with Newton's method done with a library of exact real arithmetic based on co-inductive streams. The contribution of this work is twofold. Firstly, based on Newton's method, we design and prove correct an algorithm on streams for computing the root of a real function in a lazy manner. Secondly, we prove that rounding at each step in Newton's method still yields a convergent process with an accurate correlation between the precision of the input and that of the result. An algorithm including rounding turns out to be much more efficient.