Result: Extreme Compass and Dynamic Multi-Armed Bandits for Adaptive Operator Selection

Title:
Extreme Compass and Dynamic Multi-Armed Bandits for Adaptive Operator Selection
Contributors:
Laboratoire d'Etudes et de Recherche en Informatique d'Angers (LERIA), Université d'Angers (UA), Microsoft Research - Inria Joint Centre (MSR - INRIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Microsoft Research Laboratory Cambridge-Microsoft Corporation [Redmond, Wash.], Laboratoire de Recherche en Informatique (LRI), Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS), Machine Learning and Optimisation (TAO), Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Centre Inria de Saclay, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), IEEE
Source:
IEEE Congress on Evolutionary Computation (CEC). :365-372
Publisher Information:
CCSD, 2009.
Publication Year:
2009
Collection:
collection:EC-PARIS
collection:CNRS
collection:INRIA
collection:UNIV-ANGERS
collection:UNIV-PSUD
collection:INRIA-SACLAY
collection:INRIA_TEST
collection:TESTALAIN1
collection:UMR8623
collection:INRIA2
collection:LRI-AO
collection:UNIV-PARIS-SACLAY
collection:UNIV-PSUD-SACLAY
collection:LERIA
collection:INRIA-ETATSUNIS
collection:INRIA-ROYAUMEUNI
Subject Geographic:
Original Identifier:
HAL:
Document Type:
Conference conferenceObject<br />Conference papers
Language:
English
Relation:
info:eu-repo/semantics/altIdentifier/doi/10.1109/CEC.2009.4982970
DOI:
10.1109/CEC.2009.4982970
Rights:
info:eu-repo/semantics/OpenAccess
Accession Number:
edshal.inria.00377450v3
Database:
HAL

Further Information

The goal of Adaptive Operator Selection (AOS) is the on-line control of the choice of variation operators within Evolutionary Algorithms. The control process is based on two main components, the credit assignment, that defines the reward that will be used to evaluate the quality of an operator after it has been applied, and the operator selection mechanism, that selects one operator based on some operators qualities. Two previously developed AOS methods are combined here: Compass evaluates the performance of operators by considering not only the fitness improvements from parent to offspring, but also the way they modify the diversity of the population, and their execution time; Dynamic Multi-Armed Bandit proposes a selection strategy based on the well-known UCB algorithm, achieving a compromise between exploitation and exploration, while nevertheless quickly adapting to changes. Tests with the proposed method, called ExCoDyMAB, are carried out using several hard instances of the Satisfiability problem (SAT). Results show the good synergetic effect of combining both approaches.