Result: High Resolution Surface Reconstruction from Overlapping Multiple-Views

Title:
High Resolution Surface Reconstruction from Overlapping Multiple-Views
Contributors:
Geometric computing (GEOMETRICA), Centre Inria d'Université Côte d'Azur, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre Inria de Saclay, Institut National de Recherche en Informatique et en Automatique (Inria), ANR-07-RIAM-0013,GYROVIZ,Modélisation Automatique 3D Temps réel Robuste à partir d'Images Localisées(2007)
Source:
SoCG 2009 - Twenty-fifth annual symposium on Computational geometry. :104-105
Publisher Information:
CCSD, 2009.
Publication Year:
2009
Collection:
collection:INRIA
collection:INRIA-SOPHIA
collection:INRIA-SACLAY
collection:INRIASO
collection:INRIA_TEST
collection:TESTALAIN1
collection:INRIA2
collection:UNIV-COTEDAZUR
collection:INRIA-300009
collection:ANR
Subject Geographic:
Original Identifier:
HAL:
Document Type:
Conference conferenceObject<br />Conference papers
Language:
English
Relation:
info:eu-repo/semantics/altIdentifier/doi/10.1145/1542362.1542386
DOI:
10.1145/1542362.1542386
Rights:
info:eu-repo/semantics/OpenAccess
Accession Number:
edshal.inria.00410980v1
Database:
HAL

Further Information

Extracting a computer model of a real scene from a sequence of views, is one of the most challenging and fundamental problems in computer vision. Stereo vision algorithms allow us to extract from the images a sparse 3D point cloud on the scene surfaces. However, computing an accurate mesh of the scene based on such poor quality data points (noise, sparsity) is very difficult. Here we describe a simple yet original approach that uses both the stereo vision extracted point cloud and the calibrated images. Our method is a three-stage process in which the first stage merges, filters and smoothes the input 3D points. The second stage builds for each calibrated image a triangular depth-map and fuses the set of depth-maps into a triangle soup that minimize violations of size and visibility constraints. Finally, a mesh is computed from the triangle soup using a reconstruction method that combines restricted Delaunay triangulation and Delaunay refinement.