Treffer: Context-Adaptive Vehicular Network Optimization

Title:
Context-Adaptive Vehicular Network Optimization
Contributors:
Informatique, Mathématiques et Automatique pour la Route Automatisée (IMARA), Inria Paris-Rocquencourt, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Centre de Robotique (CAOR), Mines Paris - PSL (École nationale supérieure des mines de Paris), Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL), Networks Research Group (NICTA), National ICT Australia Ltd, School of Electrical Engineering and Telecommunications (UNSW), University of New South Wales [Sydney] (UNSW), Marion Berbineau, Makoto Itami, and Guangjun Wen
Source:
ITST 2009. :186-191
Publisher Information:
CCSD, 2009.
Publication Year:
2009
Collection:
collection:ENSMP
collection:INRIA
collection:INRIA-ROCQ
collection:ENSMP_CAOR
collection:PARISTECH
collection:INRIA_TEST
collection:TESTALAIN1
collection:INRIA2
collection:PSL
collection:ENSMP_DEP_MS
collection:ENSMP_DR
collection:ENSMP-PSL
collection:INRIA-AUSTRALIE
Subject Geographic:
Original Identifier:
HAL:
Document Type:
Konferenz conferenceObject<br />Conference papers
Language:
English
Rights:
info:eu-repo/semantics/OpenAccess
Accession Number:
edshal.inria.00426451v1
Database:
HAL

Weitere Informationen

We propose a framework to optimize the communication performance and mobility management in vehicular networks. By having a single unified decision algorithm taking into account both stack-related and external contextual information such as GPS localization or signaling from other nodes, advice can be provided to every layer in the network stack to allow for globally optimized, faster and more accurate adaptation to the current conditions. We present how key example scenarios would benefit from such a system. We describe an instance of this framework using a constraint satisfaction problem (CSP) approach. We also describe our prototype implementation of the network data collection system and give some timing evaluation for a given constraint solver.